Systematic Review and Meta-Analysis of Native Kidney Biopsy Complications

Emilio D. Poggio,¹ Robyn L. McClelland,² Kristina N. Blank,² Spencer Hansen,² Shweta Bansal,³ Andrew S. Bomback,⁴ Pietro A. Canetta,⁴ Pascale Khairallah,⁹,⁴ Krzysztof Kiryluk,⁴ Stewart H. Lecker,⁵ Gearoid M. McMahon,⁶ Paul M. Palevsky,^{7,8} Samir Parikh,⁹ Sylvia E. Rosas,^{10,10,11,12} Katherine Tuttle,¹³ Miguel A. Vazquez,¹⁴ Anitha Vijayan,¹⁵ and Brad H. Rovin,¹⁶ for the Kidney Precision Medicine Project^{*}

Abstract

Background and objectives Native kidney biopsies are commonly performed in the diagnosis of acute kidney diseases and CKD. Because of the invasive nature of the procedure, bleeding-related complications are not uncommon. The National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases–sponsored Kidney Precision Medicine Project requires that all participants undergo a kidney biopsy; therefore, the objective of this analysis was to study complication rates of native kidney biopsies performed using automated devices under kidney imaging.

Design, setting, participants, & measurements This is a systematic review and meta-analysis of the literature published from January 1983 to March 2018. The initial PubMed search yielded 1139 manuscripts. Using predetermined selection criteria, 87 manuscripts were included in the final analysis. A random effects meta-analysis for proportions was used to obtain combined estimates of complication rates. Freeman–Tukey double-arcsine transformations were used to stabilize variance as complications were rare.

Results A total of 118,064 biopsies were included in this study. Patient age ranged from 30 to 79 years, and 45% of patients were women. On the basis of our meta-analysis, **pain** at the site of biopsy is estimated to occur in 4.3% of biopsied patients, hematomas are estimated to occur in 11%, macroscopic hematuria is estimated to occur in 3.5%, bleeding requiring blood transfusions is estimated to occur in 1.6%, and interventions to stop bleeding are estimated to occur in only 0.3%. Death attributed to native kidney biopsy was a rare event, occurring only in an estimated 0.06% of all biopsies but only 0.03% of outpatient biopsies. Complication rates were higher in hospitalized patients and in those with acute kidney disease. The reported complications varied on the basis of study type and geographic location.

Conclusions Although the native kidney biopsy is an invasive diagnostic procedure, the rates of bleeding complications are low. Albeit rare, **death** can occur postbiopsy. Complications are more frequently seen after kidney biopsies of hospitalized patients with AKI.

CJASN 15: 1595–1602, 2020. doi: https://doi.org/10.2215/CJN.04710420

Introduction

The native kidney biopsy was introduced into clinical practice in the 1950s, but the technique has evolved over time. Since the late 1980s, kidney biopsies have been done with the assistance of automated biopsy devices and imaging of the kidneys, mostly ultrasonography. This evolution of the procedure has therefore changed the type and severity of postbiopsy complications. The primary complications of native kidney biopsies are related to hemorrhagic events that can manifest in the form of pain, hematuria, perinephric bleeding that is self-contained as a hematoma, or active bleeding requiring red blood cell transfusions or interventions to control the bleed. Albeit rare, the most serious adverse event is death.

The medical literature on complications related to native kidney biopsies is vast and dates back more

than a half century, but it is of limited quality due to study heterogeneity, variability in the definition of complications, and reporting bias. Most studies described single-center experiences from different regions of the world. From the numerous available publications, there has been one meta-analysis and systematic review of 34 studies (9474 biopsies) that focused on bleeding complications after biopsies that were performed under kidney imaging with an automated biopsy device (1).

In the Kidney Precision Medicine Project (KPMP), protocol kidney biopsies will be performed for research purposes. The overarching goal of the KPMP is to conceptually change the paradigms of CKD and acute kidney disease by integrating deep molecular phenotyping of kidney tissue with patient characteristics and disease outcomes. Native kidney biopsies

contributing authors, the affiliations are listed at the end of this article.

Due to the number of

Correspondence: Dr. Brad H. Rovin, The Ohio State University Wexner Medical Center, Nephrology Division, 395 West 12th Avenue, Ground Floor, Columbus, OH 43210. Email: Rovin. 1@osu.edu from such patients will undergo regional and single-cell interrogation with a variety of techniques, including RNA sequencing, proteomics, and metabolomics. The current meta-analysis was undertaken to obtain an estimate of percutaneous native kidney biopsy complications in order to provide patients in the KPMP with accurate risk information during the informed consent process. We did an intentional and detailed review of the literature describing the risks and complications associated with native kidney biopsies. The KPMP Kidney Biopsy Working Group expanded upon the prior meta-analysis by adding relevant publications from June 2011 to 2017 (1). The focus of this investigation was again on complication rates of native kidney biopsies performed using automated devices in conjunction with kidney imaging for acute kidney diseases and CKD.

Materials and Methods

Search Strategy and Review Process

Our initial literature search captured articles published from January 1983 to March 2018 and used MEDLINE, Embase, and the Cochrane Library; it was restricted to publications in English. The following medical subject headings terms were used to identify potential papers: kidney, biopsy/kidney, biopsy/fine needle, biopsy/adverse effects, and biopsy/complication. Each medical subject heading term was then combined with "biopsy" and "kidney."

This search strategy identified 1139 potential papers. The review of these papers was conducted in three phases. In the first phase, the papers were randomly divided among 16 reviewers. The title and abstract for each paper were evaluated by a single reviewer. Papers were eliminated on the basis of one or more of the following criteria: abstract only (no accompanying paper); <50 biopsies; non-native biopsies included and unable to be excluded; pediatric patients included and unable to be excluded; no image guidance; no complication data provided; biopsy for kidney mass; open kidney biopsy; nonkidney biopsy; review or editorial; patient report; and use of a transjugular approach. In the first round of review, 936 papers were eliminated, leaving 203 papers for full-text review. In the full-text review, the 203 papers were again randomly divided and evaluated by a single reviewer. The entire paper was assessed, and the reasons for exclusion (same as the first round) were recorded in detail for each paper. In this phase, 88 additional papers were excluded.

For full data abstraction, the remaining 115 papers were randomly assigned to two reviewers. The reviewers entered general descriptive data from the paper (*e.g.*, country of origin, number of patients, number of biopsies, number of sites, study design, average age, percent women), the procedures (*e.g.*, needle gauge, average number of passes, duration of monitoring), and the complications reported from our prespecified list of complications (pain, hematomas, macroscopic hematuria, need for transfusion, need for interventions to stop bleeding, and death). All extracted data elements (n=46) were then compared between the two reviewers by an independent third reviewer. Of 115 papers, 90 had at least one data element for which the two reviewers disagreed. There were a total of 185 disagreements overall, of a possible 5290 comparisons. The disagreements were sent back as queries to the original two reviewers who then discussed and resolved *via* consensus. This protocol was not registered online.

Statistical Methods

We conducted a meta-analysis of proportions on the basis of a random effects model (2). This model divides the heterogeneity into two components: the between-study variance due to the true variation among different studies, and the within-study variance due to sampling error. The between-study variance is denoted by τ^2 . We tested the null hypothesis $H_0: \tau^2 = 0$ using Cochran Q and a chi-squared test to determine P values. Heterogeneity was quantified by the *I*²statistic, which is the percentage of total variation across studies that is due to heterogeneity rather than chance (3). We estimated the random effects model using the restricted maximum likelihood (4) for all complications except death. Because of the number of zero proportions, we used the Freeman-Tukey double-arcsine transformation (5) to avoid bias and stabilize the variance for the estimated effect sizes (6). We used back transformation (7) to find the estimated proportion for the total effect estimate. Because of the rarity of death, the random effects model was unable to provide a stable estimate for the true proportion of death. Thus, we used a β -binomial model to model the number of deaths using a binomial distribution and the underlying proportion of deaths with a β -distribution (8). We did not report any heterogeneity statistics for this approach as it was not comparable with the other analyses. This is because we do not calculate a value for τ^2 in this approach. Outlier studies were identified on the basis of visual inspection of forest plots and absolute residuals more than two. Influential studies were identified on the basis of leave-one-out analysis. We conducted subgroup analysis for all complications except death. We assumed common between-study variance for subgroups and used an omnibus test to examine if there was a significant difference between subgroup estimates. All analyses were conducted using R version 3.6.1 with the Meta, Metafor, and Forestplot packages.

Results

After extensive review of the English literature and application of the selection process described in Figure 1, 87 papers were used for this meta-analysis. These studies were published between 1983 and March 2018 and included 182,546 kidney biopsies. The largest study comprised 118,064 biopsies, and the smallest had 50 biopsies. Most of these investigations described clinical cohorts, but seven were randomized controlled trials. The average age of the patients included in each study ranged from 30 to 79 years, and 45% were women. The details of the reported studies are given in Supplemental Table 1.

The biopsy complications of interest were pain, kidney hematoma, macroscopic hematuria, red blood cell transfusion, need for surgical/radiologic intervention to control bleeding from the kidney, and death. Not all of these domains were specifically examined in each investigation. There was significant heterogeneity between studies in the various domains (Table 1). Heterogeneity for all of the

Figure 1. | **This flow chart describes the number of papers reviewed at each of the three rounds of review.** At each stage, papers were excluded from further review on the basis of one or more of the exclusion criteria. The final meta-analysis was conducted on the basis of data from 87 papers. bx, biopsy.

complication domains is visually depicted through forest plots of the proportion of events found in each study contributing to that domain (Supplemental Figures 1–6).

The proportion of patients who experienced one or more of these biopsy complications is summarized in Table 1. For each complication domain except death, a more detailed examination of occurrence stratified by geographical region, biopsy vintage, and biopsy needle gauge is given in Tables 2 and 3. The overall incidence of complications was low, especially for the serious adverse events of interventions to stop bleeding and death. These interventions and red blood cell transfusions occurred significantly less frequently in Asia than the United States or Europe, and Europe had a lower incidence of macroscopic hematuria than the United States and Asia. There were more pain events when a smaller needle (18 versus 16 gauge) was used, but this analysis included <1500 biopsies. There was also a numerical trend toward more hematomas and transfusions with the smaller needle, but statistical significance was not reached.

The most serious complication, death, was highly influenced by one study (8). This study investigated over 100,000 patients and recorded 2125 deaths. All of the other studies together reported only 15 deaths in 42,066 biopsies. Unlike any of the other studies, the investigation of Al Turk *et al.* (8) interrogated a nationwide inpatient database to

Table 1. Summary of kidney biopsy complications										
		All Studies	Influential Studies Excluded							
Complication Domain	Proportion	95% Confidence Interval	<i>I</i> ² , %	Proportion	95% Confidence Interval	<i>I</i> ² , %				
Pain	0.043	0.02 to 0.07	94							
Hematoma	0.11	0.07 to 0.15	99	0.088	0.06 to 0.12	98				
Hematuria	0.035	0.03 to 0.04	99							
Transfusion	0.016	0.01 to 0.02	99	0.014	0.01 to 0.02	88				
Intervention	0.003	0.00 to 0.01	73							
Death	0.0006	0.00 to 0.00		0.0003	0.00 to 0.00					

Table 2. Pain, hematoma, and macroscopic hematuria complications stratified by region, year, and needle gauge										
Subgroup	Papers, n	Pain or Hematoma, n	Biopsies, n	Estimate	95% Confidence Interval	I ² , %	Modifier Test: P Value			
Pain										
America	3	10	1440	0.0110	[0.00 to 0.06]	76.5				
Asia	7	118	1485	0.0596	[0.02 to 0.11]	94.6				
Europe	8	66	1488	0.0455	[0.02 to 0.09]	88.3	0.24			
Pre-2000	6	57	763	0.0728	[0.03 to 0.13]	84.1				
2000-2009	6	115	1938	0.0427	[0.01 to 0.09]	96.2				
2010-2018	6	22	1712	0.0212	[0.00 to 0.06]	85.3	0.21			
16 Gauge	3	13	612	0.0230	[0.00 to 0.08]	85.6				
18 Gauge	3	106	812	0.1274	[0.06 to 0.22]	93.7	0.02			
Overall	18	194	4413	0.0429	[0.02 to 0.07]	93.8				
Hematoma										
America	15	428	5012	0.0947	[0.03 to 0.18]	95.7				
Asia	19	1136	6658	0.1319	[0.07 to 0.22]	99.3				
Europe	26	877	15,989	0.0924	[0.04 to 0.16]	98.6	0.67			
Pre-2000	12	257	2053	0.1249	[0.04 to 0.24]	97.4				
2000-2009	16	765	5639	0.1060	[0.04 to 0.20]	99.3				
2010-2018	34	1419	19,967	0.0980	[0.05 to 0.16]	98.9	0.88			
16 Gauge	23	420	8423	0.0574	[0.02 to 0.11]	95.9				
18 Gauge	9	534	1728	0.1614	[0.07 to 0.29]	99.1	0.06			
Overall	62	2441	27,659	0.1050	[0.07 to 0.15]	98.9				
Macroscopic										
hematuria										
America	14	15,466	122,779	0.0481	[0.03 to 0.07]	97.3				
Asia	25	280	7321	0.0397	[0.03 to 0.05]	84.4				
Europe	25	722	27,511	0.0244	[0.02 to 0.04]	93.5	0.05			
Pre-2000	14	138	2389	0.0518	[0.03 to 0.07]	43.5				
2000-2009	16	449	9543	0.0318	[0.02 to 0.05]	94.1				
2010-2018	34	15,881	145,679	0.0305	[0.02 to 0.04]	99.3	0.10			
16 Gauge	22	232	8614	0.0249	[0.01 to 0.04]	88.9				
18 Gauge	9	78	1659	0.0351	[0.02 to 0.06]	68.5	0.37			
Overall	64	16,468	157,611	0.0347	[0.03 to 0.04]	98.8				

identify patients who had a kidney biopsy at some point
during their hospitalization. Deaths occurred during the
hospitalizations and could not necessarily be attributed to
the kidney biopsy. Excluding the study of Al Turk <i>et al.</i> (8)

decreased the meta-analyzed estimated proportions of death from 0.0006 to 0.0003. Similarly, the need for blood transfusion postbiopsy was influenced by the study by Al Turk *et al.* (8), but removing that study did not change the

Table 3. Transfusion and surgical/radiologic intervention complications stratified by region, year, and needle gauge										
Subgroup	Papers, n	Transfusion or Intervention, <i>n</i>	Biopsies, n	Estimate	95% Confidence Interval	I ² , %	Modifier Test: <i>P</i> Value			
Transfusion										
America	15	31,029	123,864	0.0460	[0.03 to 0.07]	99.5				
Asia	23	195	22,141	0.0075	[0.00 to 0.02]	85.9				
Europe	21	187	16,800	0.0103	[0.00 to 0.02]	65.0	< 0.001			
Pre-2000	7	33	1231	0.0172	[0.00 to 0.04]	69.0				
2000-2009	17	119	6759	0.0108	[0.00 to 0.02]	81.3				
2010-2018	35	31,259	154,815	0.0187	[0.01 to 0.03]	99.8	0.49			
16 Gauge	21	219	10,711	0.0574	[0.02 to 0.11]	95.9				
18 Gauge	9	31	2777	0.1614	[0.07 to 0.29]	99.1	0.06			
Overall	59	31,411	162,805	0.0160	[0.01 to 0.02]	99.8				
Surgical/radiologic										
intervention										
America	19	216	124,630	0.0047	[0.00 to 0.01]	80.3				
Asia	23	43	21,897	0.0006	[0.00 to 0.00]	59.5				
Europe	24	74	17,467	0.0052	[0.00 to 0.01]	62.8	0.04			
Pre-2000	9	9	1645	0.0033	[0.00 to 0.01]	0.0				
2000-2009	17	34	6654	0.0029	[0.00 to 0.01]	35.2				
2010-2018	40	290	155,695	0.0036	[0.00 to 0.01]	77.6	0.80			
16 Gauge	24	55	10,799	0.0024	[0.00 to 0.01]	39.8				
18 Gauge	11	12	2994	0.0005	[0.00 to 0.00]	23.7	0.28			
Overall	66	333	163,994	0.0033	[0.00 to 0.01]	72.8				

proportion of transfusions needed or study heterogeneity much (Table 1).

Another common complication of kidney biopsy was perinephric hematoma. Two studies were identified as influential for hematoma occurrence, each finding hematomas in over 80% of the cohort (9,10). Excluding these studies only decreased the proportion of hematomas from 11% to 8.8% (from one in nine to one in 11) and had little effect on study heterogeneity (Table 1). In both of these studies, kidney imaging was done postbiopsy to prospectively assess for hematomas as opposed to waiting for a clinical indication to do postbiopsy imaging. Most hematomas were small (≤ 2 cm). Several other studies reported relatively high hematoma rates (>30%), and postbiopsy imaging was also done routinely in these studies.

Discussion

This analysis was done to obtain an estimate of percutaneous native kidney biopsy complications in order to provide patients undergoing research biopsies for the KPMP with accurate risk information during the informed consent process. We determined the occurrence of adverse events using six biopsy complication domains of importance to patients and clinicians. The most severe adverse event was death, with an incidence of 0.008% (one in 12,500), followed by an intervention to stop bleeding with an incidence of 0.3% (one in 333). The need for a red blood cell transfusion was 1.6% (one in 62.5). Gross hematuria developed in 3.5% of patients (one in 29), and pain developed in 4.3% of patients (one in 23). The incidence of perinephric hematoma was 11% (one in nine).

These risk estimates were on the basis of available data largely from retrospective reports of patient series for biopsies performed for clinical indications. As such, the overall data quality was modest, and the studies were not large. Although the ranges of patients and kidney biopsies assessed were wide, the median number of patients per study was 210. There were no studies that were both prospective and designed specifically to identify complication rates. Additionally, many of the studies did not assess the full range of biopsy complication domains considered important for the KPMP. Although several biopsy complications were readily quantified, such as death, interventions to stop bleeding, red blood cell transfusions, and presence of macroscopic hematuria, the postbiopsy observation period was highly variable; therefore, events could have been missed, and rules for attribution to the biopsy procedure were not in place. Pain and hematoma were more difficult to assess. Pain is subjective, and no uniform pain assessment standard was applied in the few studies that reported pain. Similarly, there was no uniform approach to the identification or measurement of perinephric hematomas. These issues produced significant heterogeneity between studies, at least in part due to reporting bias. Because of this heterogeneity, we suggest that it is reasonable to use the upper limit of the confidence intervals provided for each complication domain (Table 1) to provide patients with the most conservative estimate of risk.

The most frequent complication of the percutaneous native kidney biopsy seems to be a postbiopsy perinephric

hematoma. Although the overall incidence of hematoma was 11%, this was derived from a mixture of studies that routinely imaged the kidney after biopsy to look for bleeding and studies that only imaged the kidney if there was a clinical indication, such as pain or a fall in hemoglobin. We speculate that if hematomas are specifically sought by imaging the kidney postbiopsy, they will be found often. However, many hematomas will be small and of arguable clinical significance. In many of the reviewed papers, the size of the hematoma was not reported, so size of a clinically relevant hematoma is unclear.

A particularly difficult complication to assess was pain related to the kidney biopsy. Only 18 papers attempted to quantify pain, and only 194 pain events were reported in nearly 4400 biopsies. No standard method of assessing pain was used across studies, and an accepted amount of pain after an uncomplicated kidney biopsy has not been determined. Therefore, the pain domain is the least accurately evaluated complication. The development of a standardized pain assessment is needed.

Death and need for red blood cell transfusion were highly influenced by one study that interrogated the US Nationwide Inpatient Sample database between 2008 and 2012 (9). All included patients (n=118,064) were identified by the International Classification of Disease code for percutaneous native kidney biopsy. In general, these patients may have been sicker than typical patients having elective outpatient diagnostic kidney biopsies. For example, only 27% of these patients had a diagnosis of GN on the basis of administrative codes. Notably, two thirds of the patients had AKI, and 15% had a pathologic diagnosis of acute tubular necrosis. Administrative codes were also used to identify complications. Mortality in this cohort was **1.8%**, but it was twice as high (2%) in patients admitted to the hospital nonelectively compared with electively (0.99%). Red blood cell transfusions were administered to a quarter of the patients. These complication rates are greater than those reported in other studies of native kidney biopsy. The findings may be explained by the acuity of illness for many of the hospitalized patients, including the presence of comorbidities such as coagulopathies or BP instability, and inability to accurately attribute complications to the biopsy itself as opposed to other conditions occurring during hospitalization. These results are similar to those from a recent investigation that examined native kidney biopsy complications in patients with acute kidney disease that was mainly AKI (11). Mortality was 3% in this cohort, but none of the deaths were directly attributed to the kidney biopsy. Red blood cell transfusions were required in 8% of patients, and 2% needed an intervention to stop bleeding; these adverse events were biopsy complications. These higher complication rates may more accurately reflect risk of performing native kidney biopsies in patients with AKI in the KPMP who are often hospitalized with significant comorbidities, as opposed to those undergoing elective, outpatient kidney biopsies.

Difficulty arises when analyzing the mortality end point due to the rarity of the event. The paper by Al Turk *et al.* (8), which has a much higher death rate then all of the other studies where death was reported, caused issues in the initial analysis (9). Furthermore, with many studies reporting zero deaths, the preferred analysis that uses random effects could not be used. Instead, we fit a β -binomial model, a method that has been shown to be useful in the setting of meta-analysis of proportions for very rare outcomes (8).

Since performing this systematic analysis, four additional investigations of complications in adults undergoing a native kidney biopsy have been published (12–15). Death was examined in three studies and occurred in one of 17,125 biopsies, less than the one in 1667 we found in our meta-analysis (12,14,15). The need for blood transfusion postbiopsy was variable. The rate was below 0.5% in an all-outpatient cohort (12), but it was 4.3% in a mixed outpatient-inpatient cohort and 5.7% in an all-inpatient cohort (13,15). Importantly, the mixed cohort observed a 57% transfusion rate among inpatients who needed an urgent kidney biopsy (15). The all-inpatient cohort data were obtained from the Nationwide Inpatient Sample database using diagnostic codes and included 35,183 biopsies (13). Most biopsies (70%) were done for AKI, and 28% of the patients had diabetes. The meta-analysis found an overall need for blood transfusion in 1.6% of patients, but when stratified by region, transfusions were needed in 4.6% of patients from America, perhaps reflecting a large number of inpatient biopsies. This estimate may be more relevant when discussing biopsy complications with potential research subjects who are inpatients. Finally, the need for angiography or surgical intervention to control bleeding was 0.6% or less in all four studies, a bit higher than the meta-analysis rate of 0.3%. A meta-analysis of 23 investigations of kidney biopsy complications in pediatric patients also demonstrated a low incidence of major bleeding events (16). Blood transfusions were required in 0.6% of patients, and an intervention to control bleeding was needed in 1.2% of patients.

Relevant to the underlying question of whether an extra research core of kidney tissue can be safely obtained during native kidney biopsy, the Transformative Research in Diabetic Neproplathy (TRIDENT) study recently reported its initial biopsy experience (17). The TRIDENT is examining the molecular pathology of diabetic kidney disease. In the first 160 biopsies, 11 patients (7%) had complications, including three patients who needed a blood transfusion, three patients who had gross hematuria, and seven patients who had large (>5-cm) hematomas. Importantly, no patient required an invasive procedure to control bleeding, and there were no deaths.

This analysis did not find an advantage of using an 18gauge biopsy needle over a 16-gauge needle for any of the complication domains; however, we cannot exclude the possibility that the 18-gauge needles were used for a specific indication in these observational studies. Nonetheless, this suggests that a 16-gauge biopsy needle may be safely used to comfortably obtain enough tissue for histologic diagnosis and research purposes.

This large meta-analysis of all published literature related to native kidney biopsies is limited to some extent by the heterogeneity of the available literature, but its strength relies in the comprehensive approach taken by the KPMP to evaluate all complication domains that are clinically relevant. By systematically reviewing and evaluating all reported complications, especially from recent single-center experiences in the United States and abroad, the presented estimates most likely reflect current practice by minimizing single-center biases.

In conclusion, this meta-analysis has considered the best available data to guide clinicians and patients to make an informed decision regarding the safety of a kidney biopsy. Overall, the data suggest the percutaneous native kidney biopsy, when done for diagnostic and prognostic purposes, is usually very safe and, by extension, is expected to be correspondingly safe in the setting of biopsies being done electively for research purposes, such as the KPMP. However, patients who are hospitalized may be at higher risk for complications than patients undergoing an elective outpatient biopsy.

Disclosures

S. Bansal reports other from Home Therapy Institutes, Osprey Medical, and UpToDate outside the submitted work. K. Kiryluk reports employment by Columbia University and grants from the National Institutes of Health (the National Institute of Diabetes and Digestive and Kidney Diseases, the National Center for Advancing Translational Sciences, the National Human Genome Research Institute) during the conduct of the study and reports other from Goldfinch Bio and nonfinancial support from AstraZeneca outside the submitted work. G.M. McMahon reports receiving nonfinancial support from GSK. P.M. Palevsky reports receiving personal fees from Baxter and grants from BioPorto and Dascena outside the submitted work. S. Parikh reports receiving grant U01: IN4687813OSU from the National Institute of Diabetes and Digestive and Kidney Diseases/the National Institutes of Health during the conduct of the study. E.D. Poggio reports receiving consulting fees from CareDx. S.E. Rosas reports attending one scientific advisory board each for Bayer HealthCare Pharmaceuticals Inc. and Reata in 2019, for which she was compensated. She has received grant support from Bayer HealthCare Pharmaceuticals Inc. and is about to start a study with MedImmune Limited, a whollyowned subsidiary of AstraZeneca AB; both are clinical trials related to diabetic nephropathy. B.H. Rovin reports receiving personal fees from AstraZeneca, Aurinia, Bristol Myers Squibb, Callidatis, Chemocentryx, EMD Serono, Janssen, Morphosys, Novartis, Omeros, and Retrophin; nonfinancial support from the Lupus Foundation of America; and grants from the National Institutes of Health outside the submitted work. K. Tuttle reports receiving personal fees from AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly, Gilead, and Novo Nordisk and grants and personal fees from Goldfinch Bio outside the submitted work. A. Vijayan reports receiving personal fees from Boeringher Ingelheim, NxStage, and Sanofi Aventis outside the submitted work. All remaining authors have nothing to disclose.

Funding

The KPMP is funded by National Institute of Diabetes and Digestive and Kidney Diseases grants UH3DK114861, UH3DK114866, UH3DK114870, UH3DK114908, UH3DK114915, UH3DK114926, UH3DK114907, UH3DK114920, UH3DK114923, UH3DK114933, and UH3DK114937.

Supplemental Material

This article contains the following supplemental material online at http://cjasn.asnjournals.org/lookup/suppl/doi:10.2215/CJN. 04710420/-/DCSupplemental.

Supplemental Figure 1. Overall pain forest plot.

Supplemental Figure 2. Overall hematoma forest plot. Supplemental Figure 3. Overall macroscopic hematuria forest plot. Supplemental Figure 4. Overall erythrocyte transfusion forest plot. Supplemental Figure 5. Overall surgical/IR intervention forest plot.

Supplemental Figure 6. Overall death forest plot.

Supplemental Material. References.

Supplemental Table 1. Study characteristics.

References

- Corapi KM, Chen JL, Balk EM, Gordon CE: Bleeding complications of native kidney biopsy: A systematic review and metaanalysis. *Am J Kidney Dis* 60: 62–73, 2012
- 2. DerSimonian R, Laird N: Meta-analysis in clinical trials. *Control Clin Trials* 7: 177–188, 1986
- Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ 327: 557–560, 2003
- Raudenbush S, Bryk A: Empirical Bayes meta-analysis. J Educ Behav Stat 10: 75–98, 1985
- 5. Freeman M, Tukey J: Transformations related to the angular and the square root. *Ann Math Stat* 21: 607–611, 1950
- Ma Y, Chu H, Mazumdar M: Meta-analysis of proportions of rare events-A comparison of exact likelihood methods with robust variance estimation. *Commun Stat Simul Comput* 45: 3036–3052, 2016
- 7. Miller J: The inverse of the Freeman-Tukey double arcsine transformation. *Am Stat* 32: 138, 1978
- 8. Al Turk AA, Estiverne C, Agrawal PR, Michaud JM: Trends and outcomes of the use of percutaneous native kidney biopsy in the United States: 5-Year data analysis of the nationwide inpatient sample. *Clin Kidney J* 11: 330–336, 2018
- Ishikawa E, Nomura S, Hamaguchi T, Obe T, Inoue-Kiyohara M, Oosugi K, Katayama K, Ito M: Ultrasonography as a predictor of overt bleeding after renal biopsy. *Clin Exp Nephrol* 13: 325–331, 2009
- Tanaka K, Kitagawa M, Onishi A, Yamanari T, Ogawa-Akiyama A, Mise K, Inoue T, Morinaga H, Uchida HA, Sugiyama H, Wada J: Arterial stiffness is an independent risk factor for anemia after percutaneous native kidney biopsy. *Kidney Blood Press Res* 42: 284–293, 2017
- Moledina DG, Luciano RL, Kukova L, Chan L, Saha A, Nadkarni G, Alfano S, Wilson FP, Perazella MA, Parikh CR: Kidney biopsyrelated complications in hospitalized patients with acute kidney disease. *Clin J Am Soc Nephrol* 13: 1633–1640, 2018
- Aaltonen S, Finne P, Honkanen E: Outpatient kidney biopsy: A single center experience and review of literature. *Nephron* 144: 14–20, 2020
- Charu V, O'Shaughnessy MM, Chertow GM, Kambham N: Percutaneous kidney biopsy and the utilization of blood transfusion and renal angiography among hospitalized adults. *Kidney Int Rep* 4: 1435–1445, 2019
- 14. Kawaguchi T, Nagasawsa T, Tsuruya K, Miura K, Katsuno T, Morikawa T, Ishikawa E, Ogura M, Matsumura H, Kurayama R, Matsumoto S, Marui Y, Hara S, Maruyama S, Narita I, Okada H, Ubara Y; Committee of Practical Guide for Kidney Biopsy 2019: A nationwide survey on clinical practice patterns and bleeding complications of percutaneous native kidney biopsy in Japan [published correction appears in *Clin Exp Nephrol* 24: 389–401, 2020]. *Clin Exp Nephrol* 24: 389–401, 2020
- Palsson R, Short SAP, Kibbelaar ZA, Amodu A, Stillman IE, Rennke HG, McMahon GM, Waikar SS: Bleeding complications after percutaneous native kidney biopsy: Results from the boston kidney biopsy cohort. *Kidney Int Rep* 5: 511–518, 2020
- Varnell CD Jr., Stone HK, Welge JA: Bleeding complications after pediatric kidney biopsy: A systematic review and meta-analysis. *Clin J Am Soc Nephrol* 14: 57–65, 2019
- Hogan JJ, Owen JG, Blady SJ, Almaani S, Avasare RS, Bansal S, Lenz O, Luciano RL, Parikh SV, Ross MJ, Sharma D, Szerlip H, Wadhwani S, Townsend RR, Palmer MB, Susztak K, Mottl AK;

TRIDENT Study Investigators: The feasibility and safety of obtaining research kidney biopsy cores in patients with diabetes: An interim analysis of the TRIDENT study. *Clin J Am Soc Nephrol* 15: 1024–1026, 2020

Received: April 9, 2020 Accepted: July 21, 2020

*The Kidney Precision Medicine Project members are as follows: American Association of Kidney Patients, Tampa, FL: Richard Knight; Beth Israel Deaconess, Boston, MA: Stewart Lecker, Isaac Stillman; Boston University, Boston, MA: Sushrut Waikar; Brigham & Women's Hospital, Boston, MA: Gearoid Mcmahon, Astrid Weins; Broad Institute, Cambridge, MA: Nir Hacohen, Paul Hoover; Case Western Reserve, Cleveland, OH: Mark Aulisio; Cleveland Clinic, Cleveland, OH: Leslie Cooperman, Leal Herlitz, John O'Toole, Emilio Poggio, John Sedor; Columbia University, New York, NY: Paul Appelbaum, Jonathan Barasch, Andrew Bomback, Vivette D'agati, Krzysztof Kiryluk, Karla Mehl; Duke University, Durham, NC: Laura Barisoni; European Molecular Biology Laboratory, Heidelberg, Germany: Theodore Alexandrov; Indiana University, Indianapolis, IN: Tarek Ashkar, Daria Barwinska, Pierre Dagher, Kenneth Dunn, Michael Eadon, Michael Ferkowicz, Katherine Kelly, Timothy Sutton, Seth Winfree; Johns Hopkins University, Baltimore, MD: Steven Menez, Chirag Parikh, Avi Rosenberg, Pam Villalobos; Joslin Diabetes Center, Boston, MA: Alison Slack, Sylvia Rosas, Mark Williams; Mount Sinai, New York, NY: Evren Azeloglu, Cijang (John) He, Ravi Iyengar; Ohio State University, Columbus, OH: Samir Parikh; Pacific Northwest National Laboratories, Richland, WA: Chris Anderton, Ljiljana Pasa-Tolic, Dusan Velickovic; Parkland Center for Clinical Innovation, Dallas, TX: George (Holt) Oliver; Patient Advocates: Joseph Ardayfio, Jack Bebiak, Keith Brown, Taneisha Campbell, Catherine Campbell, Lynda Hayashi, Nichole Jefferson, Robert Koewler, Glenda Roberts, John Saul, Anna Shpigel, Edith Christine Stutzke, Lorenda Wright, Leslie Miegs, Roy Pinkeney; Princeton University, Princeton, NJ: Rachel Sealfon, Olga Troyanskaya; Providence Medical Research Center, Spokane, WA: Katherine Tuttle; University of California San Diego, La Jolla, CA: Blue Lake, Kun Zhang; University of California San Francisco, San Francisco, CA: Maria Joanes, Zoltan Laszik, Minnie Sarwal; University of Michigan, Ann Arbor, MI: Ulysses Balis, Oliver He, Jeffrey Hodgin, Matthias Kretzler, Laura Mariani, Rajasree Menon, Edgar Otto, Jennifer Schaub, Becky Steck, Oliver He, Chrysta Lienczewski; University of Pittsburgh, Pittsburgh, PA: Michele Elder, Daniel Hall, John Kellum, Raghav Murugan, Paul Palevsky, Parmjeet Randhawa, Matthew Rosengart, Sunny Sims-Lucas, Mitchell Tublin; University of Washington, Seattle, WA: Charles Alpers, Ian De Boer, Jonathan Himmelfarb, Robyn McClelland, Sean Mooney, Stuart Shankland, Kayleen Williams, Kristina Blank, Ashveena Dighe, Jonas Carson, Frederick Dowd; UT Health San Antonio, San Antonio, TX: Kumar Sharma, Guanshi Zhang; UT Southwestern Medical Center, Dallas, TX: Asra Kermani, Simon Lee, Tyler Miller, Orson Moe, Jose Torrealba, Toto Robert, Miguel Vazquez, Nancy Wang; Washington University in St. Louis, St. Louis, MO: Joe Gaut, Sanjay Jain, Anitha Vijayan; Yale University, New Haven, CT: Dennis Moledina, Ugwuowo Ugochukwu, Francis Perry Wilson, and Tanima Arora.

Published online ahead of print. Publication date available at www.cjasn.org.

See related editorial, "How Safe Is a Native Kidney Biopsy?" and article, "Major Bleeding and Risk of Death after Percutaneous Native Kidney Biopsies: A French Nationwide Cohort Study," on pages 1541–1542 and 1587–1594, respectively.

AFFILIATIONS

¹Department of Nephrology and Hypertension, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio

- ²Department of Biostatistics, University of Washington, Seattle, Washington
- ³Division of Nephrology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- ⁴Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York ⁵Division of Nephrology and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- ⁶Division of Nephrology, Brigham and Women's Hospital, Boston, Massachusetts
- ⁷Renal Section, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- ⁸Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- ⁹Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio
- ¹⁰Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, Massachusetts
- ¹¹Nephrology Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- ¹²Harvard Medical School, Boston, Massachusetts
- ¹³Division of Nephrology, Providence Medical Research Center, Sacred Heart Medical Center, Spokane, Washington
- ¹⁴Division of Nephrology, UT Southwestern Medical Center, Dallas, Texas
- ¹⁵Division of Nephrology, Washington University in St. Louis, St. Louis, Missouri
- ¹⁶Division of Nephrology, Ohio State University Wexner Medical Center, Columbus, Ohio

Supplemental Material

Supplemental Table 1. Study Characteristics Supplemental Figure 1. Overall Pain Forest Plot Supplemental Figure 2. Overall Hematoma Forest Plot Supplemental Figure 3. Overall Macroscopic Hematuria Forest Plot Supplemental Figure 4. Overall Erythrocyte Transfusion Forest Plot Supplemental Figure 5. Overall Surgical/IR Intervention Forest Plot Supplemental Figure 6. Overall Death Forest Plot Supplemental References

Supplemental Table 1. Study Characteristics

* Outlier Study

^ Influential Study

First Author	Country	Year	Study Design	Average Age	% Female	Biopsies (n)	Pain (n)	Hematomas (n)	Macroscopic Hematuria (n)	Erythrocyte Transfusion (n)	Surgical Intervention (n)	Death (n)
Al Turk*^1	USA	2018	Cohort	55	48	118064	NR	NR	15230*	30815*^	165	2125*^
Altindal ²	Turkey	2015	CC	40	40	290	NR	NR	NR	6	2	1
Arora ³	India	2012	RCT	NR	NR	50	NR	1	1	0	0	0
Azhar ⁴	Pakistan	2005	Cohort	NR	NR	200	NR	NR	NR	NR	NR	0
Bataille ⁵	France	2012	Cohort	55	41	535	NR	2	NR	2	3	0
Branger ⁶	France	1985	RCT	NR	NR	108	2	2	2	NR	NR	NR
Carrington ⁷	Wales	2011	Cohort	52	2	192	1	2	4	2	2	0
Castoldi ⁸	Italy	1993	Cohort	NR	NR	230	7	96	16	NR	2	0
Chen ⁹	USA	2012	Cohort	37	86	219	NR	NR	NR	5	3	0
Chikamatsu*10	Japan	2017	Cohort	62	39	252	NR	NR	36*	12	2	0
Chunduri*11	USA	2015	Cohort	47	68	137	NR	44	1	10	4*	0
Cluzel ¹²	France	2000	CC	49	26	400	NR	1	2	1	3	0
Cozens ¹³	UK	1992	Cohort	47	41	154	23	NR	7	3	2	0
Cui ¹⁴	USA	2016	Cohort	56	49	86	NR	25	NR	NR	2	0
DiPalma ¹⁵	Italy	2010	Cohort	68	36	110	NR	10	1	0	0	0
Doyle ¹⁶	USA	1994	Cohort	32	50	155	NR	10	8	NR	1	0
Eiro, M ¹⁷	Japan	2005	Cohort	44	NR	394	27	149	29	0	0	0
Elahi ¹⁸	Pakistan	2017	Cohort	36	36	75	NR	20	5	NR	NR	0
Esposito ¹⁹	Italy	2018	Cohort	58	30	337	NR	NR	NR	NR	NR	0
Fisi*20	Hungary	2012	Cohort	49	42	353	NR	160	NR	2	8*	0
Gesualdo ²¹	Italy	2008	Cohort	45	NR	110	NR	NR	NR	NR	1	0
Granata ²²	Italy	2011	CC	NR	43	561	NR	15	21	2	1	0
Guerrero ²³	Spain	2014	Cohort	56	NR	180	NR	9	4	NR	3	0
Helenius ²⁴	Finland	1983	RCT	39	50	57	NR	7	NR	NR	NR	0
Hojs ²⁵	Slovenia	2004	Cohort	45	45	144	NR	2	4	0	0	0
Ilsam ²⁶	USA	2010	Cohort	44	38	56	NR	11	5	4	0	0
Ishikawa*^27	Japan	2009	Cohort	45	46	317	67*	273*^	12	1	0	0
Jordan*28	UK	2014	Cohort	35	86	215	NR	29	3	8	6*	1
Joseph ²⁹	USA	2010	Cohort	41	73	170	NR	44	NR	13	NR	0
Khajehdehi ³⁰	USA	1999	Cohort	NR	45	59	NR	NR	3	NR	NR	NR
Kitterer ³¹	Germany	2015	Cohort	58	39	205	NR	37	NR	3	1	0
Kohli ³²	India	2006	Cohort	39	32	210	NR	1	11	4	0	NR
Korbet ³³	USA	2014	Cohort	46	62	1055	3	92	76	56	11	1
Kriegshauser ³⁴	USA	2015	Cohort	59	43	293	NR	NR	NR	NR	NR	0
Lees ³⁵	Scotland	2017	Cohort	57	43	2563	NR	NR	NR	46	9	1
Lin ³⁶	Taiwan	2006	Cohort	46	NR	330	2	55	21	2	NR	0
Lubomirova ³⁷	Bulgaria	2014	Cohort	46	48	230	NR	15	NR	NR	NR	NR
Mackinnon ³⁸	UK	2008	Cohort	56	40	1120	NR	2	4	15	2	0
Mai ³⁹	Australia	2013	Cohort	NR	47	934	NR	19	13	8	0	0

		r	1	1	1		1					1
Maixnerova ⁴⁰	Czech Rep	2015	Cohort	45	42	9051	NR	133	138	NR	NR	NR
Manno ⁴¹	Italy	2011	RCT	41	NR	162	2	36	0	0	0	0
Manno ⁴²	Italy	2004	RCT	39	41	471	12	157	2	2	4	0
Margaryan ⁴³	USA	2010	Cohort	44	56	146	NR	4	2	1	0	0
Marwah ⁴⁴	USA	1996	Cohort	44	2	394	NR	11	23	22	3	0
Mauer ⁴⁵	USA	2002	RCT	30	53	285	5	4	8	NR	0	0
Maya ⁴⁶	USA	2009	Cohort	42	60	100	NR	13	NR	0	0	0
McMahon ⁴⁷	USA	2012	Cohort	49	NR	105	NR	4	5	NR	1	0
Mendelssohn ⁴⁸	Canada	1995	Cohort	NR	NR	305	NR	13	27	NR	0	0
Mishra ⁴⁹	Libya	2011	Cohort	NR	73	86	NR	2	2	NR	1	0
Miura ⁵⁰	Japan	1984	Cohort	38	46	52	NR	14	3	0	0	0
Munib ⁵¹	Pakistan	2017	Cohort	28	32	120	9	2	9	2	0	0
Nadium ⁵²	Sudan	2013	Cohort	34	44	83	5	NR	4	2	0	0
Nyman ⁵³	Saudi Arabia	1997	Cohort	NR	57	168	NR	NR	NR	NR	NR	0
Ori ⁵⁴	Israel	2002	Cohort	53	47	85	NR	7	1	4	0	0
Paivansalo*55	Finland	1984	Cohort	41	44	70	12	46*	NR	NR	NR	0
Pendon-Ruiz ⁵⁶	Spain	2014	Cohort	49	3	241	NR	NR	19	9	2	NR
Pincon ⁵⁷	France	2010	Cohort	77	48	150	NR	5	1	3	0	0
Prasad ⁵⁸	India	2015	Cohort	34	31	2138	NR	NR	NR	NR	NR	0
Preda ⁵⁹	Netherlands	2003	Cohort	NR	NR	170	NR	30	3	4	NR	0
Rao ⁶⁰	India	2018	СС	37	40	307	NR	10	19	2	4	0
Richards ⁶¹	UK	1994	Cohort	41	NR	276	NR	1	8	2	NR	0
Roccatello ⁶²	Italy	2017	Cohort	55	39	462	NR	15	12	NR	6	0
Rollino ⁶³	Italy	1994	RCT	NR	NR	201	NR	44	21	NR	NR	0
Rollino ⁶⁴	Italy	2014	Cohort	79	45	131	NR	8	3	NR	1	0
Rychlik ⁶⁵	Czech Rep	2004	Cohort	42	41	4004	NR	NR	273	NR	NR	NR
Sakaci ⁶⁶	Turkey	2015	Cohort	71	38	78	NR	NR	1	0	0	0
Sakhuja ⁶⁷	India	1990	Cohort	NR	NR	150	NR	NR	9	1	0	0
Sethi ⁶⁸	USA	2013	Cohort	47	59	100	2	NR	NR	8	1	0
Shah ⁶⁹	Singapore	1993	Cohort	32	NR	100	6	NR	4	NR	NR	0
Shidam ⁷⁰	USA	2005	Cohort	42	50	645	NR	6	12	16	4	0
Soares ⁷¹	USA	2008	Cohort	NR	44	289	NR	NR	NR	6	5	0
Sosa-Barrios ⁷²	Spain	2017	Cohort	44	58	175	NR	NR	NR	NR	NR	0
Tabatabai ⁷³	USA	2009	CC	NR	61	1116	NR	NR	NR	24	8	0
Tan ⁷⁴	China	2017	Cohort	40	50	400	NR	9	1	NR	NR	0
Tanaka*^ ⁷⁵	Japan	2017	Cohort	50	47	462	NR	386*^	5	2	0	0
Tang ⁷⁶	Hong Kong	2002	Cohort	NR	NR	141	2	2	5	2	2	0
Tikkakoski ⁷⁷	Finland	1994	Cohort	43	47	101	7	11	3	2	0	0
Tondel ⁷⁸	Norway	2012	Cohort	51	NR	8573	NR	NR	167	78	17	NR
Torres- Munoz ⁷⁹	Mexico	2011	Cohort	34	71	623	NR	96	10	11	3	0
Tung ⁸⁰	UK	1992	Cohort	45	38	104	NR	2	4	3	1	0
Wang ⁸¹	China	2015	Cohort	40	41	1985	NR	84	57	71	16	0

Werner ⁸²	Israel	2007	Cohort	46	38	77	NR	12	6	0	0	0
Whittier ⁸³	USA	2004	Cohort	NR	NR	750	NR	51	56	38	5	2
Yamamoto ⁸⁴	Japan	2015	Cohort	45	48	15191	NR	NR	NR	76	15	9
Yang ⁸⁵	China	2015	Cohort	67	39	288	NR	5	4	0	0	0
Yesudas ⁸⁶	India	2010	Cohort	43	44	65	NR	1	2	0	1	0
Zhang ⁸⁷	China	2011	Cohort	40	44	280	NR	84	20	0	0	0

Supplemental Figure 1. Overall Pain Forest Plot

Supplemental Figure 2. Overall Hematoma Forest Plot

Study	Hematomas	Biopsies	Proportion	95% C.I.	
Arora 2012	1	50	0.0200	[0.0000; 0.0839]	_ ;
Bataille 2012	2	535	0.0037	[0.0001: 0.0112]	
Branger 1986	2	108	0.0185	[0.0003: 0.0550]	
Carrington 2011	2	192	0.0104	[0.0002: 0.0311]	
Castoldi 1993	96	230	0.4174	[0.3543: 0.4818]	
Chunduri 2015	44	137	0.3212	[0.2453: 0.4020]	
Cluzel 2000	1	400	0.0025	[0.0000: 0.0107]	
Cui 2016	25	86	0.2907	[0.1990; 0.3916]	——
DiPalma 2010	10	110	0.0909	[0.0433; 0.1527]	-
Doyle 1994	10	155	0.0645	[0.0305; 0.1093]	•
Eiro, M 2005	149	394	0.3782	[0.3309; 0.4267]	-
Elahi 2017	20	75	0.2667	[0.1720; 0.3731]	
Fisi_2012	160	353	0.4533	[0.4016; 0.5055]	-
Granata_2011	15	561	0.0267	[0.0148; 0.0419]	
Guerrero-Ramos_2014	9	180	0.0500	[0.0222; 0.0874]	₽-
Helenius_1983	7	57	0.1228	[0.0483; 0.2225]	- -
Hojs_2004	2	144	0.0139	[0.0002; 0.0414]	
llsam_2010	11	56	0.1964	[0.1015; 0.3119]	
Ishikawa_2009	273	317	0.8612	[0.8208; 0.8972]	-
Jordan_2014	29	215	0.1349	[0.0922; 0.1841]	-
Joseph_2010	44	170	0.2588	[0.1955; 0.3275]	
Kitterer_2015	37	205	0.1805	[0.1306; 0.2363]	
Kohli_2006	1	210	0.0048	[0.0000; 0.0203] 🖪	
Korbet_2014	92	1055	0.0872	[0.0709; 0.1050]	
Lin_2006	55	330	0.1667	[0.1283; 0.2089]	-
Lubomirova_2014	15	230	0.0652	[0.0365; 0.1012]	-
Mackinnon_2008	2	1120	0.0018	[0.0000; 0.0054]	
Mai_2013	19	934	0.0203	[0.0122; 0.0305]	
Maixnerova_2015	133	9051	0.0147	[0.0123; 0.0173] 🔳	
Manno_2011	36	162	0.2222	[0.1613; 0.2897]	
Manno_2004	157	471	0.3333	[0.2914; 0.3766]	-
Margaryan_2010	4	146	0.0274	[0.0059; 0.0615]	•
Marwah_1996	11	394	0.0279	[0.0136; 0.0468]	
Mauer_2002	4	285	0.0140	[0.0030; 0.0317] 🖿	
Maya_2009	13	100	0.1300	[0.0703; 0.2038]	
McMahon_2012	4	105	0.0381	[0.0083; 0.0850]	-
Mendelssohn_1995	13	305	0.0426	[0.0225; 0.0685]	
Mishra_2011	2	86	0.0233	[0.0004; 0.0688]	_
Miura_1984	14	52	0.2692	[0.1563; 0.3990]	
MUNID_2017	2	120	0.0167	[0.0003; 0.0496]	
Ori_2002	1	85	0.0824	[0.0318; 0.1517] -	
Paivansaio_1984	46	150	0.6571	[0.0414, 0.7644]	
Princon_2010	0	100	0.0333	[0.0094, 0.0692]	_
Preda_2003	30	207	0.1760	[0.1220, 0.2377]	
RdU_2010 Dichards 1994	10	276	0.0326	[0.0152, 0.0556]	
Poccatello 2017	15	462	0.0030	[0.0000, 0.0100]	
Dollino 1994	10	201	0.0020	[0.0100, 0.0000]	·
Pollino 2014	44	131	0.0611	[0.1045; 0.2705]	_
Shidam 2005	6	645	0.0093	[0.0233, 0.1035]	
Tan 2017	9	400	0.0225	[0.0099: 0.0397]	
Tanaka 2017	386	462	0.8355	[0.8002: 0.8680]	-
Tang 2002	2	141	0.0142	[0 0002 0 0423]	
Tikkakoski 1994	11	101	0.1089	[0.0546: 0.1780]	- i
Torres-Munoz 2011	96	623	0.1541	[0.1268: 0.1836]	-
Tung 1992	2	104	0.0192	[0.0003: 0.0571]	
Wang 2015	84	1985	0.0423	[0.0339; 0.0516]	1
Werner 2007	12	77	0.1558	[0.0824; 0.2464]	- -
Whittier 2004	51	750	0.0680	[0.0510; 0.0872]	•
Yang 2015	5	288	0.0174	[0.0049; 0.0363]	
Yesudas_2010	1	65	0.0154	[0.0000; 0.0649]	-
Zhang_2011	84	280	0.3000	[0.2476; 0.3551]	-
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 =$	0.0621, χ ₆₁ ² = 56	47.04 (p = 0)	0.1050	[0.0691; 0.1471]	<u>←</u>

0 0.2 0.4 0.6 0.8 1 Proportion of Hematomas

Supplemental Figure 3.	Overall Macroscopic H	ematuria Forest Plot

Study	Hematurias	Biopsies	Proportion	95% C.I.	
AI Turk_2018	15230	118064	0.1290	[0.1271; 0.1309]	•
Arora_2012	1	50	0.0200	[0.0000; 0.0839]	
Branger_1986	2	108	0.0185	[0.0003; 0.0550]	
Carrington_2011	4	192	0.0208	[0.0045; 0.0469]	
Castoldi_1993	16	230	0.0696	[0.0399; 0.1064]	_
Chikamatsu_2017	36	252	0.1429	[0.1022; 0.1890]	
Chunduri_2015	1	137	0.0073	[0.0000; 0.0311]	
Cozens 1992	2	400	0.0050	[0.0001, 0.0150]	•
DiPalma 2010	1	110	0.0091	[0.0000: 0.0386]	
Doyle 1994	8	155	0.0516	[0.0215; 0.0929]	- <u>-</u>
Eiro, M_2005	29	394	0.0736	[0.0497; 0.1016]	_ _
Elahi_2017	5	75	0.0667	[0.0193; 0.1362]	
Granata_2011	21	561	0.0374	[0.0231; 0.0549]	
Guerrero-Ramos_2014	4	180	0.0222	[0.0048; 0.0500]	
Hojs_2004	4	144	0.0278	[0.0060; 0.0623]	
IISam_2010 Isbikawa 2009	0 10	217	0.0893	[0.0261, 0.1805]	
Jordan 2014	12	215	0.0379	[0.0135, 0.0020]	
Khaiehdehi 1999	3	59	0.0508	[0.0065: 0.1249]	-
Kohli 2006	11	210	0.0524	[0.0258: 0.0872]	÷
Korbet_2014	76	1055	0.0720	[0.0572; 0.0885]	
Lin_2006	21	330	0.0636	[0.0396; 0.0928]	_
Mackinnon_2008	4	1120	0.0036	[0.0008; 0.0081]	•
Mai_2013	13	934	0.0139	[0.0073; 0.0226]	-
Maixnerova_2015	138	9051	0.0152	[0.0128; 0.0179]	_ •
Manno_2011	0	162	0.0000	[0.0000; 0.0106]	-
Margaryan 2010	2	4/1	0.0042	[0.0001, 0.0126]	
Marwah 1996	23	394	0.0584	[0.0372: 0.0839]	-
Mauer 2002	8	285	0.0281	[0.0116: 0.0509]	_ _
McMahon 2012	5	105	0.0476	[0.0136; 0.0982]	
Mendelssohn_1995	27	305	0.0885	[0.0590; 0.1232]	_
Mishra_2011	2	86	0.0233	[0.0004; 0.0688]	
Miura_1984	3	52	0.0577	[0.0074; 0.1411]	
Munib_2017	9	120	0.0750	[0.0337; 0.1299]	
Nadium_2013	4	83	0.0482	[0.0105, 0.1069]	
Dendon-Duiz 2014	19	2/1	0.0116	[0.0000, 0.0496]	
Pincon 2010	1	150	0.0067	[0.0000 0.0284]	-
Preda 2003	3	170	0.0176	[0.0022; 0.0443]	
Rao_2018	19	307	0.0619	[0.0374; 0.0919]	_
Richards_1994	8	276	0.0290	[0.0119; 0.0526]	
Roccatello_2017	12	462	0.0260	[0.0132; 0.0427]	
Rollino_1994	21	201	0.1045	[0.0656; 0.1509]	
Rollino_2014	3	131	0.0229	[0.0028; 0.0572]	
Rychilk_2004 Sakaci 2015	2/3	4004	0.0662	[0.0606, 0.0762]	
Sakhuja 1990	9	150	0.0600	[0.0268: 0.1045]	
Shah 1993	4	100	0.0400	[0.0087: 0.0891]	
Shidam 2005	12	645	0.0186	[0.0094; 0.0307]	
Tan_2017	1	400	0.0025	[0.0000; 0.0107]	■-
Tanaka_2017	5	462	0.0108	[0.0030; 0.0227]	—
Tang_2002	5	141	0.0355	[0.0101; 0.0736]	
Tikkakoski_1994	3	101	0.0297	[0.0037; 0.0739]	
Torros Munoz 2011	167	85/3	0.0195	[0.0167; 0.0225]	
Tung 1992	10	104	0.0101	[0.0073, 0.0276]	
Wang 2015	57	1985	0.0287	[0.0218: 0.0365]	-
Werner 2007	6	77	0.0779	[0.0268: 0.1501]	
Whittier 2004	56	750	0.0747	[0.0569; 0.0946]	————
Yang_2015	4	288	0.0139	[0.0030; 0.0314]	
Yesudas_2010	2	65	0.0308	[0.0005; 0.0905]	
Zhang_2011	20	280	0.0714	[0.0439; 0.1048]	
Dandom offects med-			0.0047	10 0074: 0 04003	
Heterogeneity: $I^2 = 99\%$, $T^2 =$	0.0054, χ ₆₃ ² = 54	105.02 (p = 0	0.0347))	[0.0274; 0.0428]	

0 0.05 0.1 0.15 0.2 Proportion of Hematurias

Supplemental Figure 4. Overall Erythrocyte Transfusion Forest Plot

Study	Tranfusions	Biopsies	Proportion	95% C.I.	
Al Turk 2018	30815	118064	0.2610	[0.2585: 0.2635]	•
Altindal 2015	6	290	0.0207	[0.0069; 0.0408]	
Arora 2012	0	50	0.0000	0.0000; 0.0341]	•
Bataille_2012	2	535	0.0037	[0.0001; 0.0112]	
Carrington_2011	2	192	0.0104	[0.0002; 0.0311]	-
Chen_2012	5	219	0.0228	[0.0064; 0.0476]	
Chikamatsu_2017	12	252	0.0476	[0.0243; 0.0778]	
Chunduri_2015	10	137	0.0730	[0.0346; 0.1233]	
Cluzel_2000	1	400	0.0025	[0.0000; 0.0107]	-
Cozens_1992	3	154	0.0195	[0.0024; 0.0488]	-
DIPalma_2010	0	110	0.0000	[0.0000; 0.0156]	
Elio, W_2005 Fisi 2012	2	353	0.0000	[0.0000, 0.0044]	
Granata 2011	2	561	0.0036	[0.0001; 0.0170]	
Hois 2004	0	144	0.0000	[0.0000 ⁻ 0.0119]	
llsam 2010	4	56	0.0714	[0.0158: 0.1565]	
Ishikawa 2009	1	317	0.0032	[0.0000; 0.0135]	
Jordan_2014	8	215	0.0372	[0.0154; 0.0673]	
Joseph_2010	13	170	0.0765	[0.0407; 0.1218]	_ _
Kitterer_2015	3	205	0.0146	[0.0018; 0.0368]	—
Kohli_2006	4	210	0.0190	[0.0041; 0.0429]	-
Korbet_2014	56	1055	0.0531	[0.0403; 0.0675]	
Lees_2017	46	2563	0.0179	[0.0131; 0.0235]	
LIN_2006 Maakinnan_2008	2	330	0.0061	[0.0001; 0.0182]	
Mai 2013	10	03/	0.0134	[0.0074, 0.0211]	2
Manno 2011	0	162	0.0000	[0.0000; 0.0107]	
Manno 2004	2	471	0.0042	[0.0001: 0.0128]	
Margaryan 2010	1	146	0.0068	[0.0000; 0.0292]	
Marwah_1996	22	394	0.0558	[0.0351; 0.0809]	
Maya_2009	0	100	0.0000	[0.0000; 0.0171]	-
Miura_1984	0	52	0.0000	[0.0000; 0.0328]	•
Munib_2017	2	120	0.0167	[0.0003; 0.0496]	-
Nadium_2013	2	83	0.0241	[0.0004; 0.0713]	
Dendon-Duiz 2014	4	60 241	0.0471	[0.0103, 0.1044]	
Pendon-Ruiz_2014 Pincon 2010	3	150	0.0373	[0.0165, 0.0655]	
Preda 2003	4	170	0.0200	[0.0050: 0.0529]	
Rao 2018	2	307	0.0065	[0.0001; 0.0195]	.
Richards_1994	2	276	0.0072	[0.0001; 0.0217]	-
Sakaci_2015	0	78	0.0000	[0.0000; 0.0219]	•
Sakhuja_1990	1	150	0.0067	[0.0000; 0.0284]	-
Sethi_2013	8	100	0.0800	[0.0336; 0.1424]	
Shidam_2005	16	645	0.0248	[0.0140; 0.0384]	-
Soares_2008	6	289	0.0208	[0.0069; 0.0410]	-
Tabatabal_2009	24	1116	0.0215	[0.0137; 0.0309]	_ _
Tang 2002	2	402	0.0043	[0.0001, 0.0130]	
Tikkakoski 1994	2	101	0.0142	[0.0002; 0.0423]	
Tondel 2012	78	8573	0.0091	[0.0072: 0.0112]	
Torres-Munoz_2011	11	623	0.0177	[0.0086; 0.0297]	÷-
Tung_1992	3	104	0.0288	[0.0036; 0.0718]	
Wang_2015	71	1985	0.0358	[0.0280; 0.0444]	=
Werner_2007	0	77	0.0000	[0.0000; 0.0222]	•
whittier_2004	38	750	0.0507	[0.0360; 0.0676]	
ramamoto_2015	76	15191	0.0050	[0.0039; 0.0062]	
Tally_2010 Vesudas 2010	0	288	0.0000	[0.0000; 0.0060]	
Zhang 2011	0	280	0.0000	[0.0000, 0.0203] [0.0000 ⁻ 0.0061]	
znang_zorn	0	200	0.0000	[0.0000, 0.0001]	_
Random effects model	l		0.0160	[0.0102; 0.0229]	<u> </u>
Heterogeneity: $I^2 = 100\%$, τ^2	= 0.0073, χ ₅₈ ² = 2	4434.73 (p =	: 0)	-	
					0 0.05 0.1 0.15 0.2 0.25 0.3

Proportion of Transfusions

Supplemental Figure 5. Overall Surgical/IR Intervention Forest Plot

Study	Interventions	Biopsies	Proportion	95% C.I.	
AI Turk 2018	165	118064	0.0014	[0.0012: 0.0016]	0
Altindal 2015	2	290	0.0069	[0.0001; 0.0207]	
Arora_2012	0	50	0.0000	[0.0000; 0.0341]	•
Bataille_2012	3	535	0.0056	[0.0007; 0.0142]	
Carrington_2011	2	192	0.0104	[0.0002; 0.0311]	
Castoldi_1993	2	230	0.0087	[0.0001; 0.0260]	
Chen_2012	3	219	0.0137	[0.0017; 0.0344]	
Chikamatsu_2017	2	252	0.0079	[0.0001; 0.0238]	
Chunduri_2015	4	137	0.0292	[0.0063; 0.0654]	
Cluzel_2000	3	400	0.0075	[0.0009, 0.0189]	
Cui 2016	2	104	0.0130	[0.0002, 0.0387]	
DiPalma 2010	2	110	0.0233	[0.0004, 0.0666]	
Dovle 1994	1	155	0.0065	[0.0000; 0.0100]	
Eiro M 2005		394	0.0000	[0 0000: 0 0044]	
Fisi 2012	8	353	0.0227	[0.0093: 0.0412]	_
Gesualdo 2008	1	110	0.0091	[0.0000; 0.0386]	
Granata 2011	1	561	0.0018	[0.0000; 0.0076]	-
Guerrero-Ramos_2014	3	180	0.0167	[0.0021; 0.0418]	
Hojs_2004	0	144	0.0000	[0.0000; 0.0119]	
llsam_2010	0	56	0.0000	[0.0000; 0.0305]	•
Ishikawa_2009	0	317	0.0000	[0.0000; 0.0054]	
Jordan_2014	6	215	0.0279	[0.0093; 0.0549]	
Kitterer_2015	1	205	0.0049	[0.0000; 0.0208]	
Kohli_2006	0	210	0.0000	[0.0000; 0.0082]	
Korbet_2014	11	1055	0.0104	[0.0051; 0.0176]	
Lees_2017	9	2563	0.0035	[0.0015; 0.0062]	-
Mackinnon_2008	2	1120	0.0018	[0.0000; 0.0054]	
Mai_2013	0	934	0.0000		
Manno_2011	0	162	0.0000	[0.0000; 0.0106]	
Margaryan 2010	4	4/1	0.0000	[0.0016, 0.0192]	
Manyah 1996	0	140	0.0000	[0.0000, 0.0117]	
Mauer 2002	0	285	0.0070	[0.0009, 0.0192]	
Mava 2009	0	100	0.0000	[0.0000; 0.0000]	
McMahon 2012	1	105	0.0095	[0.0000; 0.0404]	
Mendelssohn 1995	0	305	0.0000	[0.0000; 0.0056]	
Mishra 2011	1	86	0.0116	[0.0000; 0.0493]	
Miura 1984	0	52	0.0000	[0.0000; 0.0328]	•
Munib 2017	0	120	0.0000	[0.0000; 0.0143]	•
Nadium_2013	0	83	0.0000	[0.0000; 0.0206]	•
Ori_2002	0	85	0.0000	[0.0000; 0.0201]	
Pendon-Ruiz_2014	2	241	0.0083	[0.0001; 0.0248]	
Pincon_2010	0	150	0.0000	[0.0000; 0.0114]	•
Rao_2018	4	307	0.0130	[0.0028; 0.0295]	
Roccatello_2017	6	462	0.0130	[0.0043; 0.0257]	
Rollino_2014	1	131	0.0076	[0.0000; 0.0325]	
Sakaci_2015	0	/8	0.0000	[0.0000; 0.0219]	
Sakhuja_1990	0	100	0.0000	[0.0000, 0.0114]	
Setti_2013 Shidom 2005	1	100	0.0100	[0.0000; 0.0424]	
Sniuani_2005	4 5	280	0.0002	[0.0013, 0.0141]	
Tabatabai 2009	8	1116	0.0072	[0.0029: 0.0131]	-
Tanaka 2017	0	462	0.0000	[0 0000: 0 0037]	
Tang 2002	2	141	0.0142	[0.0002; 0.0423]	
Tikkakoski 1994	0	101	0.0000	[0.0000; 0.0170]	•
Tondel 2012	17	8573	0.0020	[0.0011; 0.0030]	•
Torres-Munoz_2011	3	623	0.0048	[0.0006; 0.0122]	
Tung_1992	1	104	0.0096	[0.0000; 0.0408]	•
Wang_2015	16	1985	0.0081	[0.0045; 0.0125]	-=-
Werner_2007	0	77	0.0000	[0.0000; 0.0222]	
Whittier_2004	5	750	0.0067	[0.0019; 0.0140]	
Yamamoto_2015	15	15191	0.0010	[0.0005; 0.0016]	
Yang_2015	0	288	0.0000	[0.0000; 0.0060]	
resudas_2010	1	65	0.0154	[0.0000; 0.0649]	
Znang_2011	0	280	0.0000	[0.0000; 0.0061]	
Dandom offects medal			0 0022	10 0020: 0 00403	1
Heterogeneity: $l^2 = 73\%$ $\tau^2 =$	0 0008 v ² = 230	27 (p < 0.01)	[0.0020, 0.0049]	-
	5.5555, A65 - 235.	2. 0.01	,	(0.02 0.04 0.06 0.08
				,	Proportion of Interventions

Supplemental Figure 6. Overall Death Forest Plot

Albu_2010 2123 110540 0.0124 0.0124 0.0124 0.0124 0.0124 Albu_2010 0 200 00000 0.0000	Study	Deaths	Biopsies	Proportion	Lower Bound	Upper Bound	
Aread_John I Bit Dotto Dotto Dotto Basil_JON 0 100 00000 000000 000000 000000 Basil_JON 0 100 00000 000000 000000 000000 Basil_JON 0 100 00000 000000 <td< td=""><td>Al Turk_2018</td><td>2125</td><td>118064</td><td>0.01800</td><td>0.01724</td><td>0.01876</td><td>+</td></td<>	Al Turk_2018	2125	118064	0.01800	0.01724	0.01876	+
Areg_2012 0 90 0.00000 0.0000 0.00000	Altindal_2015	1	290	0.00345	0.00000	0.01020	
Altar_203 0 0000 000000 00000 00000 <th< td=""><td>Arora_2012</td><td>0</td><td>50</td><td>0.00000</td><td>0.00000</td><td>0.00874</td><td>•</td></th<>	Arora_2012	0	50	0.00000	0.00000	0.00874	•
Banis_2012 0 555 00000 00002 000002 00002 00002 <th< td=""><td>Azhar_2005</td><td>0</td><td>200</td><td>0.00000</td><td>0.00000</td><td>0.00219</td><td>•</td></th<>	Azhar_2005	0	200	0.00000	0.00000	0.00219	•
Carrows Description 0 192 0.0000 0.0000 0.0112	Bataille 2012	0	535	0.00000	0.00000	0.00082	•
Carabi Open Displat Open Displat Open Displat Carabi 0 219 0.0000 0.0000 0.0010	Carrington_2011	0	192	0.00000	0.00000	0.00228	•
Cim_1212 0 1910 0.0000 0.0000 0.0000	Castoldi 1993	0	230	0.00000	0.00000	0.00190	-
Channel0171 0 222 00000 00000 00174	Chen 2012	0	219	0.00000	0.00000	0.00200	
Charder of the set	Chikamatsu 2017	ő	252	0.00000	0.00000	0.00174	
Carbon C </td <td>Chunduri 2015</td> <td>ő</td> <td>137</td> <td>0.00000</td> <td>0.00000</td> <td>0.00320</td> <td></td>	Chunduri 2015	ő	137	0.00000	0.00000	0.00320	
Lambe 1 2000 0 0000 0 0000 0 0000 0 0000 0 0000 0	Chandan_2010	š	400	0.00000	0.00000	0.00320	I
Cal Dan Control Control Con	Ciuzei_2000	0	400	0.00000	0.00000	0.00110	T
City_Dia O BO CONCOLD CONCOLD<	Cozens_1992	0	154	0.00000	0.00000	0.00284	
Distant_2010 0 110 00000 00000 00011	Cui_2018	0	86	0.00000	0.00000	0.00509	
Dome_1044 0 198 0.00000 0.0000 0.00000 <td>DiPalma_2010</td> <td>0</td> <td>110</td> <td>0.00000</td> <td>0.00000</td> <td>0.00398</td> <td>•</td>	DiPalma_2010	0	110	0.00000	0.00000	0.00398	•
En M ₂ 007 En M ₂	Doyle_1994	0	155	0.00000	0.00000	0.00283	-
Elang. 2017 0 0 75 0.00000 0.0	Eiro, M_2005	0	394	0.00000	0.00000	0.00111	••
Execute_2019 0 337 0.0000 0.00100 0.00100 0.00110 General_ADD1 0 151 0.0000 0.0000 0.00178	Elahi_2017	0	75	0.00000	0.00000	0.00583	•
Fig. 2012 0 353 0.0000 0.0000 0.00124	Esposito_2018	0	337	0.00000	0.00000	0.00130	
General, 2019 0 110 0.0000 0.0000 0.0038 General, 2014 0 180 0.0000 0.0000 0.0074 Heretan, 100 0 17 0.0000 0.0000 0.0074 Heretan, 2010 0 17 0.0000 0.0000 0.0074 Heretan, 2010 0 17 0.0000 0.0000 0.0171 Josep, 2016 0 17 0.0000 0.0000 0.0171 Josep, 2016 0 120 0.0000 0.0113 + Josep, 2016 0 120 0.0000 0.0113 + Les, 2017 1 2253 0.0000 0.0013 + Les, 2017 1 2253 0.0000 0.0013 + Les, 2017 1 2253 0.0000 0.0013 + Les, 2017 1 120 0.0000 0.00114 + Les, 2017 1 120 0.0000 0.00014 +	Fisi_2012	0	353	0.00000	0.00000	0.00124	₽-
General-Sarol Heteria, 1613 0 61 0.0000 0.0000 0.0078 Heteria, 1613 0 57 0.0000 0.0000 0.00778 Heteria, 2041 0 17 0.0000 0.00000 0.00778 Lisan, 204 0 12 0.0000 0.00000 0.00078 Lisan, 204 0 12 0.0000 0.00000 0.0000 0.0000 Addat, 204 0 12 0.0000 0.0000 0.0000 0.0000 Addat, 2014 1 1255 0.0000 0.0000 0.0000 0.0000 0.0000 Lise0017 1 2550 0.0000 0.0000 0.0000 0.0000 0.0000 Man_2013 0 44 0.0000 0.0000 0.0000 0.0000 Man_2014 0 160 0.0000 0.0000 0.0000 0.0000 Man_2013 0 44 0.0000 0.0000 0.0000 0.0000 Man_2014 0	Gesualdo 2008	0	110	0.00000	0.00000	0.00398	•
Guerrand Control District Control District Hear 100 00000 00000 00000 00000 Hear 100 100 00000 00000 00000 Hars 100 100 00000 00000 00000 Hars 100 100 00000 00000 00000 Hars 100 00000 00000 00000 00000 Hars 100	Granata 2011	0	561	0.00000	0.00000	0.00078	
Hear 1943 0 17 0.00000 0.0000 0.00000	Guerrero-Ramos 2014	0	180	0.00000	0.00000	0.00243	-
integ_200 0 14 0.00000 0.0000 0.00000 <td>Helenius 1983</td> <td>0</td> <td>57</td> <td>0.00000</td> <td>0.00000</td> <td>0.00767</td> <td></td>	Helenius 1983	0	57	0.00000	0.00000	0.00767	
Internation 0 150 0.0000 0.0000 0.0000 Jordar 2014 1 215 0.0048 0.0000 0.00214	Hois 2004	0	144	0.00000	0.00000	0.00304	
Description C C C CONCORD Description Statel 2014 1 0 25 0.00000 0.00000 0.00001 Kiberg 2015 0 226 0.00000 0.00000 0.00001 0.00001 Kiberg 2015 0 283 0.00000 0.00000 0.00001 0.00001 Ling 2017 1 283 0.00000 0.00000 0.00001 0.00001 Makinerg 2013 0 644 0.00000 0.00001 0.00001 0.00001 Makinerg 2011 0 471 0.00000 0.00001 0.00001 0.00001 Marg 2013 0 471 0.00000 0.00000 0.00014 - Marg 2013 0 471 0.00000 0.00000 0.00014 - Marg 2010 0 471 0.00000 0.00000 0.00014 - Marg 2011 0 84 0.00000 0.00000 0.00014 - Marg 2012	llsam 2010	ő	88	0.00000	0.00000	0.00304	I
cathod 0 317 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013	Ishikawa 2000		00	0.00000	0.00000	0.00781	
	Isnikawa_2009	U	317	0.00000	0.00000	0.00138	
	Jordan_2014	1	215	0.00465	0.00000	0.01375	•
indereg_2015 0 205 0.0000 0.0	Joseph_2010	0	170	0.00000	0.00000	0.00258	-
idental_2014 1 1055 0.0000 0.0000 0.0000 0.0015	Kitterer_2015	0	205	0.00000	0.00000	0.00214	•
Michagenater_2015 0 283 0.0000 0.0000 0.0015	Korbet_2014	1	1055	0.00095	0.00000	0.00280	-
Lee 2017 1 2263 0.0003 0.0000 0.015 F Hacking 2008 0 1120 0.0000 0.0000 0.0003 F Macking 2014 0 122 0.0000 0.0000 0.0003 F Mang 2011 0 471 0.0000 0.0000 0.0000 F Margang 2010 0 148 0.0000 0.0000 0.0014 F Margang 2010 0 128 0.0000 0.0000 0.0014 F Margang 2017 0 158 0.0000 0.0000 0.0014 F Margang 2017 0 158 0.0000 0.0000 0.0055 F Margang 2017 0 150 0.0000 0.0000 0.0055 F Margang 2018 0 150 0.0000 0.0000 0.0005 F Margang 2018 0 150 0.0000 0.0000 0.0005 F Margang 2017 0 150 0.0000 0.0000 0.0005 F Margang 2018 0 150 0.0000 0.0000 0.0002 F Margang 2018 0 150 0.0000 0.0000 0.0000 0.0000 F Margang 2018 0 150 0.0000 0.0000 0.0000 F Margang 2018 0 150 0.0000 0.0000 0.0000 F Marg	Kriegshauser_2015	0	293	0.00000	0.00000	0.00150	+-
Lin_2006 0 130 0 00000 0.00000 0.0000 0.0000 Mai_0013 0 044 0.00000 0.0000 0.0003 0 0.0000 Mann_2014 0 147 0.00000 0.0000 0.0003 0 0.0000 Mann_2010 0 146 0.00000 0.00000 0.0003 0 0.0000 Marey 106 0 0 344 0.00000 0.00000 0.0011 0 - Marey 106 0 0 344 0.00000 0.00000 0.0011 0 - Marey 200 0 0 00 0.0000 0.0000 0.0011 0 - Marey 200 0 0 00 0.0000 0.0011 0 - Marey 200 0 0 0 0 0 0 0.0000 0.0011 0 - Marey 200 0 0 0 0 0 0 0.0000 0.0011 0 - Marey 200 0 0 0 0 0 0 0.0000 0.0011 0 - Marey 200 0 0 0 0 0 0 0 0 0.0000 0.0011 0 - Marey 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lees_2017	1	2563	0.00039	0.00000	0.00115	•
Maximon_2008 0 1120 0.00000 0.00000 0.00000 0.00001 Mann_2014 0 452 0.00000 0.00000 0.00001 Mann_2010 0 446 0.00000 0.00000 0.00001 Margarya_2010 0 446 0.00000 0.00000 0.00114 - Maxesh_1906 0 285 0.00000 0.00000 0.00144 - May_2009 0 105 0.00000 0.00000 0.00144 - Margarya_2013 0 85 0.00000 0.00000 0.000477 - Margarya_2013 0 85 0.00000 0.00000 0.00001 0.00001 Margarya_2013 0 83 0.00000 0.00001 0.00001 0.00001 Margarya_1997 188 0.00000 0.00000 0.00001 0.00001 Margarya_1997 0 180 0.00000 0.00001 0.00001 Margarya_1997 0 0.00000	Lin_2006	0	330	0.00000	0.00000	0.00133	■-
Main 2013 0 024 0.0000 0.00001 0.00001 Manne 2004 0 412 0.00000 0.00000 0.00003 Manne 2004 0 444 0.00000 0.00000 0.00003 Marews 2010 0 444 0.00000 0.00000 0.00111 Marews 2002 0 285 0.00000 0.0044 - Mays 2009 0 105 0.00000 0.0044 - Mandaton 1960 0 305 0.00000 0.0044 - Mandaton 1960 0 305 0.00000 0.0044 - Mandaton 1960 0 305 0.00000 0.00001 0.00001 Mandaton 1960 0 82 0.00000 0.00001 0.00001 Mandaton 1960 0 83 0.00000 0.00002 0.00001 Mandaton 1970 0 0.00000 0.00002 0.00001 0.00002 Pressize 104 0 170 0.00000	Mackinnon 2008	0	1120	0.00000	0.00000	0.00039	
Name_201 0 112 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0011 Marey_2002 0 255 0.00000 0.00000 0.00417	Mai 2013	0	934	0.00000	0 00000	0.00047	The second se
Hamm_2011 0 471 0.0000	Manno 2004	0	162	0.00000	0.00000	0.00270	T
mark_point 0 144 0.0000 0.0000 0.0000 Memer_2002 0 284 0.00000 0.00000 0.00001 Mayer_2002 0 284 0.00000 0.00000 0.00001 Mayer_2002 0 285 0.00000 0.00000 0.00001 Mayer_2012 0 105 0.00000 0.00000 0.00001 Mandent_0112 0 295 0.00000 0.00000 0.00001 Mandent_011 0 82 0.00000 0.00000 0.00001 Mandent_011 0 82 0.00000 0.00000 0.00001 Mandent_011 0 82 0.00000 0.00000 0.00001 Mandent_011 0 132 0.00000 0.00000 0.00001 Nader_0116 0 152 0.00000 0.00000 0.00001 Pricer_0116 0 152 0.00000 0.00000 0.00001 Prese_0116 0 276 0.00000 <td>Manno 2011</td> <td>ő</td> <td>471</td> <td>0.00000</td> <td>0.00000</td> <td>0.00003</td> <td></td>	Manno 2011	ő	471	0.00000	0.00000	0.00003	
Margang 2010 0 140 0.0000 0.0000 0.0000 Maxer 2002 0 285 0.0000 0.0014 - Marga 2010 0 100 0.0000 0.0014 - Mediatach 2012 0 105 0.0000 0.0014 - Marga 2010 0 205 0.0000 0.0014 - Marga 2011 0 85 0.0000 0.0004 0.0006 Marga 2017 0 120 0.0000 0.00021 - Marga 2013 0 88 0.0000 0.00021 - Paivansia, 164 0 70 0.0000 0.00021 - Privansia, 164 0 70 0.0000 0.00021 - Privansia, 164 0 70 0.0000 0.00021 - Privansia, 164 0 276 0.0000 0.00021 - Privansia, 164 0 307 0.00000 0.00051 -	Manno_2011		4/1	0.00000	0.00000	0.00093	T
Markar Markar Markar Status Markar	Margaryan_2010	0	140	0.00000	0.00000	0.00300	
Mase_2002 0 289 0.00000 0.00154	Marwan_1990	0	384	0.00000	0.00000	0.00111	T
Maya_2009 0 100 0.00000 0.00000 0.00438 Mendelssohn_1995 0 305 0.00000 0.00000 0.00144 Mendelssohn_1995 0 325 0.00000 0.00000 0.00599 Must_1944 0 52 0.00000 0.00000 0.00659 Nadium_2013 0 83 0.00000 0.00000 0.00655 Nadium_2184 0 70 0.00000 0.00000 0.00655 Phoen_2016 0 165 0.00000 0.00000 0.00228 Phoen_2016 0 150 0.00000 0.00020 Image Preds_2003 0 170 0.0000 0.00000 0.0028 Image Robustic_1904 0 275 0.0000 0.00000 0.00005 Image Robustic_1904 0 213 0.0000 0.00000 0.0005 Image Robustic_1904 0 210 0.0000 0.00000 0.0000 0.0005	Mauer_2002	0	285	0.00000	0.00000	0.00154	-
McMahon_2012 0 105 0.00000 0.00000 0.00417 Mahon_2011 0 80 0.00000 0.00000 0.00569 Mains_1084 0 52 0.00000 0.00000 0.00365 Munis_1087 0 120 0.00000 0.00267 - Munis_1087 0 188 0.00000 0.00265 - Nyman_1087 0 188 0.00000 0.00265 - Paivansal_1084 0 70 0.00000 0.00222 - Prinon_2010 0 150 0.00000 0.00228 - Preds_2033 0 170 0.00000 0.00028 - Rolma_1904 0 276 0.00000 0.00028 - Rolma_1904 0 276 0.00000 0.00028 - Rolma_1904 0 216 0.00000 0.00028 - Rolma_1904 0 211 0.00000 0.00028 - Rolma_1904 0 201 0.00000 0.00028 - </td <td>Maya_2009</td> <td>0</td> <td>100</td> <td>0.00000</td> <td>0.00000</td> <td>0.00438</td> <td>•</td>	Maya_2009	0	100	0.00000	0.00000	0.00438	•
Mendelsohn, 1995 0 305 0.00000 0.00000 0.00144 Mular, 2011 0 88 0.00000 0.00000 0.00841 Mular, 2017 0 120 0.00000 0.00841	McMahon_2012	0	105	0.00000	0.00000	0.00417	•
Mahra_2101 0 86 0.00000 0.00000 0.00000 Munz_1644 0 52 0.00000 0.00000 0.00065 Munz_1031 0 83 0.00000 0.00000 0.00027 Nyman_1997 0 188 0.00000 0.00000 0.00021 Paivanala_1644 0 70 0.00000 0.00000 0.00022 Press_2015 0 2138 0.00000 0.00000 0.00020 Press_2016 0 2138 0.00000 0.00000 0.00020 Press_2018 0 307 0.00000 0.00000 0.00000 0.00006 Rolma_1964 0 275 0.00000 0.00000 0.00006	Mendelssohn_1995	0	305	0.00000	0.00000	0.00144	+-
Mura_1984 0 52 0.0000 0.00001 0.00001 Nadiw_2017 0 120 0.00000 0.00000 0.00027 Nyman_1997 0 183 0.00000 0.00000 0.00021 Paivanasi_1844 0 70 0.00000 0.00022	Mishra_2011	0	86	0.00000	0.00000	0.00509	•
Munic_2017 0 120 0.00000 0.00000 0.00885 Nyman_1997 0 188 0.00000 0.00001 0.00291 Nyman_1997 0 188 0.00000 0.00291 - Privansaic_1984 0 70 0.00000 0.00221 - Pricen_2010 0 150 0.00000 0.00228 - Press_2033 0 170 0.00000 0.00000 0.0028 Robustin_1904 0 276 0.00000 0.00005 - Robustin_2017 0 482 0.00000 0.00000 0.0028 Robustin_2017 0 482 0.00000 0.00005 - Robustin_2017 0 482 0.00000 0.0028 - Robustin_1904 0 131 0.00000 0.0028 - Sakhig_1900 150 0.00000 0.00000 0.00438 - Sakhig_1990 0 100 0.00000 0.00028 <td>Miura_1984</td> <td>0</td> <td>52</td> <td>0.00000</td> <td>0.00000</td> <td>0.00841</td> <td>•</td>	Miura_1984	0	52	0.00000	0.00000	0.00841	•
Nation_2013 0 83 0.0000 0.0000 0.0027 Nyman_1997 0 185 0.0000 0.0000 0.0021 Pavansab_1844 0 70 0.0000 0.0025 Pravansab_1844 0 70 0.0000 0.0025 Pravansab_1844 0 2138 0.0000 0.0020 Prasad_2015 0 2138 0.0000 0.0000 0.0022 Rab_2018 0 307 0.0000 0.0000 0.0025 Rabridge 1044 0 276 0.0000 0.0000 0.0025 Rabridge 1044 0 276 0.0000 0.0000 0.0025 Rabridge 1044 0 276 0.0000 0.0000 0.0025 Sakaci_2017 0 462 0.0000 0.0028 - Sakaci_21804 0 100 0.0000 0.0028 - Sakaci_2190 0 156 0.0000 0.0028 - Sakaci_2190	Munib 2017	0	120	0.00000	0.00000	0.00365	•
Nyman_1997 0 168 0.00000 0.0000 0.00201 Ori_2002 0 85 0.00000 0.00000 0.00215 Pinon_2010 0 150 0.00000 0.00000 0.00225 Pinon_2010 0 150 0.00000 0.00000 0.00225 Preds_2033 0 170 0.00000 0.00000 0.00258 Reb_a016 0 277 0.00000 0.00000 0.00164 Robins_1904 0 276 0.00000 0.00000 0.00164 Robins_1904 0 201 0.00000 0.00000 0.00334 Robins_1904 0 201 0.00000 0.00000 0.0034 Robins_1904 0 131 0.00000 0.00000 0.0034 Robins_1904 0 150 0.00000 0.00000 0.00025 Sakhig_1900 0 150 0.00000 0.00000 0.00038 Sakhig_1903 0 00 0.00000	Nadium 2013	0	83	0.00000	0.00000	0.00527	· · · · · · · · · · · · · · · · · · ·
Ori_2002 0 85 0.00000 0.00000 0.000515 Paivansalo_11694 170 0.00000 0.00020 0.00025 Prasal_2015 0 2138 0.00000 0.00025 Prasal_2016 0 307 0.00000 0.00025 Rao_2018 0 307 0.00000 0.00025 Rao_2014 0 276 0.00000 0.00005 Robracts_10241 0 211 0.00000 0.00005 Rolino_2114 0 131 0.00000 0.00001 0.00005 Sakai_2015 0 78 0.00000 0.00001 0.00035 Sakai_2015 0 78 0.00000 0.00001 0.00035 Sakai_2015 0 78 0.00000 0.00000 0.00035 Sakai_2016 0 100 0.00000 0.00036 0.0003 Sakai_2017 0 116 0.00000 0.00036 0.00036 Satai_2005 0 1116	Nyman 1997	0	168	0.00000	0.00000	0.00261	-
Diputer 0 </td <td>Ori 2002</td> <td>0</td> <td>85</td> <td>0.00000</td> <td>0.00000</td> <td>0.00515</td> <td></td>	Ori 2002	0	85	0.00000	0.00000	0.00515	
Instrate_let 0 100 0.00000 0.00020 0.00020 Prised_2015 0 2138 0.00000 0.00000 0.00020 Rao_2018 0 307 0.00000 0.00000 0.00025 Rao_2018 0 307 0.00000 0.00000 0.00025 Rao_2017 0 462 0.00000 0.00005 - Rolino_1844 0 201 0.00000 0.00000 0.00055 Rolino_1844 0 201 0.00000 0.00000 0.00055 Sakai_2015 0 78 0.00000 0.00000 0.00052 Sakai_19190 0 150 0.00000 0.00000 0.00052 Sakai_2013 0 100 0.00000 0.00058 - Sakai_2013 0 100 0.00000 0.00058 - Shidan_2005 0 645 0.00000 0.00058 - Sana_2017 0 400 0.00000 0.00005 <td>Paivaosalo 1094</td> <td>ő</td> <td>70</td> <td>0.00000</td> <td>0.00000</td> <td>0.00825</td> <td></td>	Paivaosalo 1094	ő	70	0.00000	0.00000	0.00825	
International (2010) 0 100 0.00000 0.00000 0.00020 Preda_2003 0 170 0.00000 0.00000 0.00020 Richards_1094 0 276 0.00000 0.00000 0.00005 Rocatelio_2017 0 482 0.00000 0.00000 0.00055 Rolino_1044 0 211 0.00000 0.00000 0.00056 Rolino_2014 0 131 0.00000 0.00000 0.00034 Rolino_1044 0 131 0.00000 0.00000 0.00034 Sakaci_2015 0 78 0.00000 0.00000 0.00034 Sakaci_2013 0 100 0.00000 0.00088	Disease 2040	ě	450	0.00000	0.00000	0.00020	I
rrassd_2015 0 2185 0.00000 0.00000 0.00000 Rao_2018 0 307 0.00000 0.00000 0.00143 Rao_2017 0 462 0.00000 0.00000 0.00258 Rolino_1994 0 201 0.00000 0.00000 0.00218 Rolino_2014 0 131 0.00000 0.00000 0.00282 Sakai_2015 0 78 0.00000 0.00000 0.00282 Sakai_ja1990 0 150 0.00000 0.00000 0.00282 Sakai_ja1990 0 150 0.00000 0.00000 0.00282 Sakai_2015 0 78 0.00000 0.00000 0.00282 Sakai_2013 0 100 0.00000 0.0008 - Solar=Sarios_2008 0 289 0.00000 0.00026 - Soar=Sarios_2017 0 175 0.00000 0.00000 0.00015 Tanaka_2017 0 462 0.00000 0.00016 - Tanaka_2017 0 462 0.000	Pincon_2010	0	100	0.00000	0.00000	0.00292	
Preda_2003 0 1/0 0.00000 0.00000 0.00000 0.00158	Prasad_2015	0	2138	0.00000	0.00000	0.00020	
Rac_2018 0 307 0.00000 0.00000 0.00143	Preda_2003	0	1/0	0.00000	0.00000	0.00258	-
Richards_1994 0 276 0.00000 0.00000 0.00169	Rao_2018	0	307	0.00000	0.00000	0.00143	-
Rocatelio_2017 0 462 0.00000 0.00000 0.00005 Rollino_1994 0 201 0.00000 0.00000 0.00018 Sakai_2015 0 78 0.00000 0.00000 0.00061 Sakai_1990 0 150 0.00000 0.00000 0.000292 Shahuja_1990 0 150 0.00000 0.00000 0.00438 Shahuja_1993 0 100 0.00000 0.00008 0.00088 Shahuja_2005 0 645 0.00000 0.00008 0.00088 Soares_2008 0 229 0.00000 0.00000 0.00020 Soares_2017 0 175 0.00000 0.00000 0.00039 Tan_2017 0 400 0.00000 0.00005 - Tang_202 0 1411 0.00000 0.00005 - Tang_2015 0 1623 0.00000 0.00010 - Venng_2015 0 1985 0.00000 0.00021 - Vang_1015 9 15191 0.00267	Richards_1994	0	276	0.00000	0.00000	0.00159	-
Rolling_1994 0 201 0.00000 0.00000 0.00218 Rolling_2014 0 131 0.00000 0.00000 0.00334 Sakaci_2015 0 78 0.00000 0.00000 0.00282 Saking_1990 0 150 0.00000 0.00000 0.00282 Sethi_2013 0 100 0.00000 0.00000 0.00438 Shidan_2005 0 645 0.00000 0.00000 0.00088 Soares_2008 0 289 0.00000 0.00000 0.00008 Soares_2017 0 175 0.00000 0.00000 0.00009 Tan_2177 0 460 0.00000 0.00000 0.00005 Tan_2017 0 462 0.00000 0.00000 0.00010 Tang_2017 0 462 0.00000 0.00000 0.00025 Tan_2017 0 462 0.00000 0.00000 0.00010 Tang_2017 0 462 0.00000 0.00000 0.00025 Tang_2017 0 462 0.00	Roccatello_2017	0	462	0.00000	0.00000	0.00095	•
Rollino_2014 0 131 0.00000 0.00000 0.00334 Sakai_2015 0 78 0.00000 0.00000 0.00222 Sakhuja_1990 0 150 0.00000 0.00000 0.00222 Sthidam_2005 0 645 0.00000 0.00000 0.00088 Soares_2008 0 289 0.00000 0.00000 0.00020 Soares_2017 0 175 0.00000 0.00000 0.00039 Tan_2017 0 400 0.00000 0.00000 0.00000 Tang_2017 0 402 0.00000 0.00000 0.00000 Tang_2017 0 462 0.00000 0.00000 0.00000 Tang_2017 0 462 0.00000 0.00000 0.00000 Tung_1992 0 101 0.000	Rollino_1994	0	201	0.00000	0.00000	0.00218	←
Sakadi_2015 0 78 0.00000 0.00000 0.00000 Sakhi_1990 0 150 0.00000 0.00000 0.00292 Stah_1993 0 100 0.00000 0.00000 0.00438 Shidan_2005 0 645 0.00000 0.00000 0.00088 Soares_2008 0 289 0.00000 0.00000 0.000250 Tabatabi 2009 0 1116 0.00000 0.00000 0.00039 Tanaka_2017 0 462 0.00000 0.00000 0.00095 - Tang_202 0 141 0.00000 0.00000 0.00010 0.00037 Tikkaoski 1994 0 101 0.00000 0.00000 0.00027 Tung_1992 0 1985 0.00000 0.00000 0.00027 Warmer_2017 0 482 0.00000 0.00000 0.00027 Warmer_2017 0 1985 0.00000 0.00021 0.00438	Rollino_2014	0	131	0.00000	0.00000	0.00334	←
Sakhuja_1990 0 150 0.00000 0.00000 0.00292 Sethi_2013 0 100 0.00000 0.00000 0.00438 Shidam_2005 0 645 0.00000 0.00000 0.00088 Soar=Barrios_2017 0 175 0.00000 0.00000 0.00026 Soar=Barrios_2017 0 1116 0.00000 0.00000 0.00009 Tan_2017 0 400 0.00000 0.00000 0.00010 Tanaka_2017 0 482 0.00000 0.00000 0.00010 Tanka_2017 0 482 0.00000 0.00000 0.00010 Tang_202 0 141 0.00000 0.00000 0.00010 Torres-Munoz_2011 0 623 0.00000 0.00021 0.0088 Vemer_2007 0 176 0.00000 0.00000 0.00088 - Vamamoto_2015 9 15191 0.00269 0.00021 0.00088 - Vamamoto_2015 9 15191 0.00000 0.00000 0.00152 - -<	Sakaci_2015	0	78	0.00000	0.00000	0.00561	•
Sethi_2013 0 100 0.00000 0.00000 0.00438 Shah_1993 0 100 0.00000 0.00000 0.00438 Shidam_2005 0 645 0.00000 0.00000 0.00088 Soares_2008 0 280 0.00000 0.00000 0.00250 Tabstabil_2009 0 1116 0.00000 0.00000 0.00010 Tan_2017 0 462 0.00000 0.00000 0.00095 Tang202 0 141 0.00000 0.00000 0.00085 Torres-Munoz_2011 0 623 0.00000 0.00021 0.00021 Valence_207 0 177 0.00000 0.00000 0.00022 Valence_207 Vang_2015 0 1	Sakhuja 1990	0	150	0.00000	0.00000	0.00292	•
Shah 1993 0 100 0.0000 0.0000 0.00438 Shidan 2005 0 645 0.0000 0.0000 0.00068 Soares 2008 0 289 0.00000 0.00020 0.00250 Tabatabai 2009 0 1116 0.00000 0.00000 0.00039 Tanzka 2017 0 400 0.00000 0.00005 - Tanaka 2017 0 462 0.00000 0.00000 0.00010 Tang 2002 0 141 0.00000 0.00005 - Tang 2017 0 623 0.00000 0.00010 0.00010 Tang 2017 0 462 0.00000 0.000110 - Tang 2017 0 462 0.00000 0.00011 - Tang 2017 0 141 0.00000 0.00011 - Torres-Muno 2011 0 623 0.00000 0.00021 - Varg 2015 0 1985 0.00000 0.000021	Sethi_2013	ō	100	0.00000	0.00000	0.00438	↓
Shidam 2005 0 645 0.0000 0.00000 0.00000 Soares_2008 0 289 0.00000 0.00000 0.00152 Sosa-Barrios_2017 0 175 0.00000 0.00000 0.000250 Tan_2017 0 400 0.00000 0.00000 0.00005 Tan_2017 0 462 0.00000 0.00005 - Tang202 0 141 0.00000 0.00005 - Tang202 0 141 0.00000 0.00005 - Tikkakoski 1994 0 101 0.00000 0.00000 0.00010 Torres-Munoz_2011 0 623 0.00000 0.00022 - Wang_2015 0 1985 0.00000 0.00022 - - Werner_2077 0 77 0.00000 0.00021 0.0088 - Yang_2015 0 288 0.00000 0.00023 - - Yang_2011 0 280	Shah 1993	0	100	0.0000	0 00000	0.00438	
Soares_2008 0 289 0.00000 0.00000 0.00152 Soares_2017 0 175 0.00000 0.00000 0.00250 Tabatabai_2009 0 1116 0.00000 0.00000 0.00039 Tan_2017 0 460 0.00000 0.00000 0.00165 Tan_2017 0 462 0.00000 0.00000 0.00095 Tan_20202 0 141 0.00000 0.00000 0.00011 Torres-Munoz_2011 0 623 0.00000 0.00000 0.00021 Torres-Munoz_2011 0 623 0.00000 0.00000 0.00021 Vang_2015 0 1985 0.00000 0.00022 Werner_2007 0 770 0.00000 0.00026 Vang_2015 9 15191 0.00267 0.00000 0.00088 Vang_2015 0 288 0.00000 0.00152 Vang_2011 0 280 0.00000	Shidam 2005	ő	645	0.00000	0.00000	0.00068	÷
Current Source Current Source Current Source Current Source Sosa-Barries 2017 0 175 0.00000 0.00020 - Tabatabai 2009 0 1116 0.00000 0.00000 0.00039 - Tanaka 2017 0 462 0.00000 0.00000 0.00010 - Tanaka 2017 0 462 0.00000 0.00000 0.00010 - Tanaka 2017 0 462 0.00000 0.00000 0.000110 - Tanaka 2017 0 462 0.00000 0.00000 0.000110 - Tanaka 2017 0 462 0.00000 0.00000 0.00131 - Tikkakoski 1994 0 101 0.00000 0.00010 0.00170 - Tung_1992 0 104 0.00000 0.00000 0.00021 Wang 2015 0 1985 0.00000 0.00058 - - - - 400000 10000083 - - - <td>Soares 2008</td> <td>ň</td> <td>280</td> <td>0.00000</td> <td>0.00000</td> <td>0.00152</td> <td>T</td>	Soares 2008	ň	280	0.00000	0.00000	0.00152	T
Close Damos_corr 0 11/5 0.00000 <t< td=""><td>Coca-Barrios 2047</td><td></td><td>475</td><td>0.00000</td><td>0.00000</td><td>0.00102</td><td><u> </u></td></t<>	Coca-Barrios 2047		475	0.00000	0.00000	0.00102	<u> </u>
Interstant 2008 0 1110 0.00000 0.00000 0.00039 Tan_2017 0 400 0.00000 0.00000 0.00101 Tanska_2017 0 462 0.00000 0.00000 0.00101 Tanska_2017 0 462 0.00000 0.00000 0.00101 Tanska_2017 0 462 0.00000 0.00000 0.00111 Tinkaka01 0 101 0.00000 0.00000 0.00433 Torres-Munoz_2011 0 623 0.00000 0.00000 0.00021 Vang_2015 0 1985 0.00000 0.00000 0.00088 Whittier_2004 2 750 0.00267 0.00000 0.00088 Yang_2015 0 288 0.00000 0.00052 Yang_2015 0 65 0.00000 0.00152 Yang_2011 0 280 0.00000 0.00158	Josa-Damos_2017	2	1/0	0.00000	0.00000	0.00200	-
tan_corr 0 400 0.00000 0.00000 0.00010 0.00010 0.00010 0.00000 0.00000 0.00005 Image 2017 0 462 0.00000 0.00000 0.00005 Image 2012 0 141 0.00000 0.00000 0.000110 Image 2012 0 141 0.00000 0.00000 0.000110 Image 2012 0 101 0.00000 0.00000 0.000170 Image 2012 0 104 0.00000 0.00000 0.00012 Image 2015 0 1985 0.00000 0.00000 0.00021 Image 2015 0 1985 0.00000 0.00000 0.00021 Image 2012 Image 2015 0 177 0.00000 0.00000 0.00088 Image 2015 0 288 0.00000 0.00012 Image 2015 0 288 0.00000 0.00015 Image 2015 0 288 0.00000 0.00016 0.00152 Image 2011 Image 2012 Image 2013 Image 2013 Image 2013 Image 2013 Image 2013 Image	100410081_2008		1110	0.00000	0.00000	0.00039	- T
Ianaka_2017 0 462 0.00000 0.00000 0.00095 Tang_2002 0 141 0.00000 0.00000 0.00311 Tickakoski_1994 0 101 0.00000 0.00000 0.00070 Torres-Munoz_2011 0 623 0.00000 0.00000 0.00070 Vang_2015 0 1985 0.00000 0.00000 0.00021 Werner_2007 0 77 0.00000 0.000838	ian_2017	0	400	0.00000	0.00000	0.00110	T
Iang_2002 0 141 0.00000 0.00000 0.0011 Tikkakoski_1994 0 101 0.00000 0.00000 0.00433 Torres-Munoz_2011 0 623 0.00000 0.00000 0.00433 Vang_2015 0 1985 0.00000 0.00000 0.00421 Werner_2007 0 77 0.00000 0.00088 - Yamanoto_2015 9 15191 0.00267 0.00000 0.00688 Yang_2015 0 288 0.00000 0.00673 - Yang_2011 0 280 0.00000 0.00158 - Summary 0.00060 0.0026 0.00138 - -	lanaka_2017	0	462	0.00000	0.00000	0.00095	- T
Tikkakoski 1994 0 101 0.00000 0.00000 0.00433 Torres-Munoz 2011 0 623 0.00000 0.00000 0.00070 Tung_1992 0 104 0.00000 0.00000 0.00021 Wang_2015 0 1985 0.00000 0.00000 0.00022 Werner_2007 0 77 0.00000 0.00000 0.00886 Yanamoto_2015 9 15191 0.00059 0.00001 0.00152 Yang_2015 0 288 0.00000 0.00873 - Yang_2011 0 280 0.00000 0.00158 - Summary 0.00060 0.0026 0.00138 - -	lang_2002	0	141	0.00000	0.00000	0.00311	
Torres-Munoz_2011 0 623 0.00000 0.00070 Image (1962) Tung_1962 0 104 0.00000 0.00000 0.00021 Wang_2015 0 1985 0.00000 0.00000 0.00058 Werner_2007 0 77 0.00000 0.00058 Image (1962) VMittig_2004 2 750 0.00267 0.00000 0.000836 Image (1972) Yamamoto_2015 9 15191 0.00059 0.00021 0.00088 Image (1972) Yang_2015 0 288 0.00000 0.00152 Image (1972) Image (1972) Image (1972) Yesudas_2010 0 65 0.00000 0.00168 Image (1972)	Tikkakoski_1994	0	101	0.00000	0.00000	0.00433	
Tung_1992 0 104 0.00000 0.00000 0.00421 Wang_2015 0 1985 0.00000 0.00000 0.0022 Werner_2007 0 77 0.00000 0.00836 • Yamamoto_2015 9 15191 0.00267 0.00000 0.00636 Yang_2015 0 288 0.00000 0.00673 • Yang_2011 0 65 0.00000 0.00156 • Summary 0.00060 0.0026 0.00138 • •	Torres-Munoz_2011	0	623	0.00000	0.00000	0.00070	
Wang_2015 0 1985 0.0000 0.0002 Werner_2007 0 77 0.0000 0.00000 0.00668 Whittier_2004 2 750 0.00267 0.00000 0.00836 Yamamoto_2015 9 15191 0.00059 0.00021 0.00008 Image: Constant of the second of the secon	Tung_1992	0	104	0.00000	0.00000	0.00421	<u>+</u>
Werner_2007 0 77 0.00000 0.00568 Whitter_2004 2 750 0.00267 0.00000 0.00636 Yamamoto_2015 9 15191 0.00000 0.00636 • Yang_2015 0 288 0.00000 0.00673 • Yesudas_2010 0 65 0.00000 0.00668 • Summary 0.00060 0.00026 0.00138 • •	Wang_2015	0	1985	0.00000	0.00000	0.00022	
Whittier_2004 2 750 0.00267 0.00000 0.00836 Yamamoto_2015 9 15191 0.00059 0.00021 0.00098 • Yang_2015 0 288 0.00000 0.00152 • • Yesudas_2010 0 65 0.00000 0.00056 • • Zhang_2011 0 280 0.00000 0.00156 • • Summary 0.00060 0.0026 0.00138 • • •	Werner_2007	0	77	0.00000	0.00000	0.00568	· · · · · · · · · · · · · · · · · · ·
Yamamoto_2015 9 15191 0.00059 0.00021 0.00098 Yang_2015 0 288 0.00000 0.00152	Whittier 2004	2	750	0.00267	0.00000	0.00636	
Yang_2015 0 288 0.00000 0.00152 Yesudas_2010 0 65 0.00000 0.000673 Zhang_2011 0 280 0.00000 0.00156 Summary 0.00060 0.00026 0.00138	Yamamoto 2015	Â	15191	0.00059	0.00021	0.00098	
Name Construction	Yang 2015	ñ	288	0.00000	0.00021	0.00152	- -
Instant_or is 0 00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00156 Image: constraint of the second sec	Vesudas 2010	č	200 85	0.00000	0.00000	0.00132	T
Summary 0.00060 0.00026 0.00138 - 0 0.00060 0.00026 0.00138 - <td>Zhang 2011</td> <td></td> <td>200</td> <td>0.00000</td> <td>0.00000</td> <td>0.00073</td> <td>L</td>	Zhang 2011		200	0.00000	0.00000	0.00073	L
Summary 0.00060 0.00026 0.00138	znang_zum	U	280	0.00000	0.00000	0.00100	-
2ummary 0.00026 0.00138	C			0.00000	0.0000	0.00100	
0 0.0125 0.025	summary			0.00060	0.00026	0.00138	
							0 0.0125 0.025

Supplemental References

- 1. Al Turk AA, Estiverne C, Agrawal PR, Michaud JM. Trends and outcomes of the use of percutaneous native kidney biopsy in the United States: 5-year data analysis of the Nationwide Inpatient Sample. *Clin Kidney J.* 2018;11(3):330-336.
- 2. Altindal M, Yildirim T, Turkmen E, et al. Safety of Percutaneous Ultrasound-Guided Kidney Biopsy in Patients with AA Amyloidosis. *Nephron.* 2015;131(1):17-22.
- 3. Arora K, Punia RS, D'Cruz S. Comparison of diagnostic quality of kidney biopsy obtained using 16G and 18G needles in patients with diffuse renal disease. *Saudi Journal of Kidney Diseases & Transplantation*. 2012;23(1):88-92.
- 4. Azhar A, Anwar N, Zeb A, Ullah A. Renal biopsy: An effective and safe diagnostic procedure. *Journal of Postgraduate Medical Institute.* 2006;20(1):78-81.
- 5. Bataille S, Jourde N, Daniel L, et al. Comparative safety and efficiency of five percutaneous kidney biopsy approaches of native kidneys: a multicenter study. *American Journal of Nephrology.* 2012;35(5):387-393.
- 6. Branger B, Oules R, Balducchi JP, Fourcade J, Bourgeois JM. Ultrasonically continuously guided renal biopsy. *Uremia Investigation*. 1985;9(2):297-303.
- 7. Carrington CP, Williams A, Griffiths DF, Riley SG, Donovan KL. Adult day-case renal biopsy: a single-centre experience. *Nephrology Dialysis Transplantation*. 2011;26(5):1559-1563.
- 8. Castoldi MC, Del Moro RM, D'Urbano ML, et al. Sonography after renal biopsy: assessment of its role in 230 consecutive cases. *Abdominal Imaging*. 1994;19(1):72-77.
- 9. Chen TK, Estrella MM, Fine DM. Predictors of kidney biopsy complication among patients with systemic lupus erythematosus. *Lupus.* 2012;21(8):848-854.
- 10. Chikamatsu Y, Matsuda K, Takeuchi Y, et al. Quantification of bleeding volume using computed tomography and clinical complications after percutaneous renal biopsy. *Clinical Kidney Journal*. 2017;10(1):9-15.
- 11. Chunduri S, Whittier WL, Korbet SM. Adequacy and complication rates with 14- vs. 16-gauge automated needles in percutaneous renal biopsy of native kidneys. *Seminars in Dialysis*. 2015;28(2):E11-14.
- 12. Cluzel P, Martinez F, Bellin MF, et al. Transjugular versus percutaneous renal biopsy for the diagnosis of parenchymal disease: comparison of sampling effectiveness and complications. *Radiology.* 2000;215(3):689-693.
- 13. Cozens NJ, Murchison JT, Allan PL, Winney RJ. Conventional 15 G needle technique for renal biopsy compared with ultrasound-guided spring-loaded 18 G needle biopsy. *British Journal of Radiology*. 1992;65(775):594-597.
- 14. Cui S, Heller HT, Waikar SS, McMahon GM. Needle Size and the Risk of Kidney Biopsy Bleeding Complications. *KI Reports.* 2016;1(4):324-326.
- 15. Di Palma AM, d'Apollo AM, Vendemia F, Stallone G, Infante B, Gesualdo L. Kidney biopsy in the elderly. *Journal of Nephrology.* 2010;23 Suppl 15:S55-60.
- 16. Doyle AJ, Gregory MC, Terreros DA. Percutaneous native renal biopsy: comparison of a 1.2-mm spring-driven system with a traditional 2-mm hand-driven system. *American Journal of Kidney Diseases*. 1994;23(4):498-503.
- 17. Eiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. *Clinical & Experimental Nephrology*. 2005;9(1):40-45.
- 18. Elahi I, Fazal EM, Abbasi T, Maqbool S. Frequency of haemorrhagic complications of renal biopsy. *Pakistan Journal of Medical and Health Sciences*. 2017;11(1):375-377.
- 19. Esposito V, Mazzon G, Baiardi P, et al. Safety and adequacy of percutaneous kidney biopsy performed by nephrology trainees. *BMC Nephrology*. 2018;19(1):14.

- 20. Fisi V, Mazak I, Degrell P, et al. Histological diagnosis determines complications of percutaneous renal biopsy: a single-center experience in 353 patients. *Kidney & Blood Pressure Research*. 2012;35(1):26-34.
- 21. Gesualdo L, Cormio L, Stallone G, et al. Percutaneous ultrasound-guided renal biopsy in supine antero-lateral position: a new approach for obese and non-obese patients. *Nephrology Dialysis Transplantation*. 2008;23(3):971-976.
- 22. Granata A, Floccari F, Ferrantelli A, et al. Does systematic preliminar colour Doppler study reduce kidney biopsy complication incidence? *International Journal of Nephrology*. 2011;2011:419093.
- 23. Guerrero-Ramos F, Villacampa-Auba F, Jimenez-Alcaide E, et al. Renal biopsy with 16G needle: a safety study. *Actas Urologicas Espanolas.* 2014;38(9):584-588.
- 24. Helenius H, Laasonen L, Forslund T, Kock B, Kuhlback B, Edgren J. Ultrasonic scanning after percutaneous renal biopsy. *Scandinavian Journal of Urology & Nephrology*. 1983;17(2):213-216.
- 25. Hojs R. Kidney biopsy and power Doppler imaging. *Clinical Nephrology*. 2004;62(5):351-354.
- 26. Islam N, Fulop T, Zsom L, et al. Do platelet function analyzer-100 testing results correlate with bleeding events after percutaneous renal biopsy? *Clinical Nephrology*. 2010;73(3):229-237.
- 27. Ishikawa E, Nomura S, Hamaguchi T, et al. Ultrasonography as a predictor of overt bleeding after renal biopsy. *Clinical & Experimental Nephrology.* 2009;13(4):325-331.
- 28. Jordan N, Chaib A, Sangle S, et al. Association of thrombotic microangiopathy and intimal hyperplasia with bleeding post-renal biopsy in antiphospholipid antibody-positive patients. *Arthritis care & research.* 2014;66(5):725-731.
- 29. Joseph AJ, Compton SP, Holmes LH, et al. Utility of percutaneous renal biopsy in chronic kidney disease. *Nephrology*. 2010;15(5):544-548.
- 30. Khajehdehi P, Junaid SM, Salinas-Madrigal L, Schmitz PG, Bastani B. Percutaneous renal biopsy in the 1990s: safety, value, and implications for early hospital discharge. *American Journal of Kidney Diseases*. 1999;34(1):92-97.
- 31. Kitterer D, Gurzing K, Segerer S, et al. Diagnostic impact of percutaneous renal biopsy. *Clinical Nephrology.* 2015;84(6):311-322.
- 32. Kohli HS, Jairam A, Bhat A, et al. Safety of kidney biopsy in elderly: a prospective study. *International Urology & Nephrology.* 2006;38(3-4):815-820.
- 33. Korbet SM, Volpini KC, Whittier WL. Percutaneous renal biopsy of native kidneys: a single-center experience of 1,055 biopsies. *American Journal of Nephrology*. 2014;39(2):153-162.
- 34. Kriegshauser JS, Patel MD, Young SW, Chen F, Eversman WG, Chang YH. Risk of bleeding after native renal biopsy as a function of preprocedural systolic and diastolic blood pressure. *Journal of Vascular & Interventional Radiology*. 2015;26(2):206-212.
- 35. Lees JS, McQuarrie EP, Mordi N, Geddes CC, Fox JG, Mackinnon B. Risk factors for bleeding complications after nephrologist-performed native renal biopsy. *Clinical Kidney Journal*. 2017;10(4):573-577.
- 36. Lin WC, Yang Y, Wen YK, Chang CC. Outpatient versus inpatient renal biopsy: a retrospective study. *Clinical Nephrology.* 2006;66(1):17-24.
- 37. Lubomirova M, Tzocheva T, Hristova M, Bogov B. Complications of automated spring fired biopsy gun technique. A retrospective analysis of 230 cases. *Hippokratia*. 2014;18(1):40-43.
- 38. Mackinnon B, Fraser E, Simpson K, Fox JG, Geddes C. Is it necessary to stop antiplatelet agents before a native renal biopsy? *Nephrology Dialysis Transplantation*. 2008;23(11):3566-3570.
- 39. Mai J, Yong J, Dixson H, et al. Is bigger better? A retrospective analysis of native renal biopsies with 16 Gauge versus 18 Gauge automatic needles. *Nephrology*. 2013;18(7):525-530.
- 40. Maixnerova D, Jancova E, Skibova J, et al. Nationwide biopsy survey of renal diseases in the Czech Republic during the years 1994-2011. *Journal of Nephrology*. 2015;28(1):39-49.

- 41. Manno C, Bonifati C, Torres DD, Campobasso N, Schena FP. Desmopressin acetate in percutaneous ultrasound-guided kidney biopsy: a randomized controlled trial. *American Journal of Kidney Diseases*. 2011;57(6):850-855.
- 42. Manno C, Strippoli GF, Arnesano L, et al. Predictors of bleeding complications in percutaneous ultrasound-guided renal biopsy. *Kidney International.* 2004;66(4):1570-1577.
- 43. Margaryan A, Perazella MA, Mahnensmith RL, Abu-Alfa AK. Experience with outpatient computed tomographic-guided renal biopsy. *Clinical Nephrology*. 2010;74(6):440-445.
- 44. Marwah DS, Korbet SM. Timing of complications in percutaneous renal biopsy: what is the optimal period of observation? *American Journal of Kidney Diseases*. 1996;28(1):47-52.
- 45. Mauer M, Zinman B, Gardiner R, et al. ACE-I and ARBs in early diabetic nephropathy. *Journal of the Renin-Angiotensin-Aldosterone System.* 2002;3(4):262-269.
- 46. Maya ID, Allon M. Percutaneous renal biopsy: outpatient observation without hospitalization is safe. *Seminars in Dialysis.* 2009;22(4):458-461.
- 47. McMahon GM, McGovern ME, Bijol V, et al. Development of an outpatient native kidney biopsy service in low-risk patients: a multidisciplinary approach. *American Journal of Nephrology.* 2012;35(4):321-326.
- 48. Mendelssohn DC, Cole EH. Outcomes of percutaneous kidney biopsy, including those of solitary native kidneys. *American Journal of Kidney Diseases*. 1995;26(4):580-585.
- 49. Mishra A, Tarsin R, Elhabbash B, et al. Percutaneous ultrasound-guided renal biopsy. *Saudi Journal of Kidney Diseases & Transplantation.* 2011;22(4):746-750.
- 50. Miura H, Tazoe N, Hara M, Kuwahara K, Itoh J, Nakayama M. Ultrasonographic assessment of perirenal hematoma after percutaneous renal biopsy in adult patients. *Nippon Jinzo Gakkai Shi Japanese Journal of Nephrology*. 1984;26(3):337-342.
- 51. Munib S, Mahmood MBR, Fazli S, Uddin N. Percutaneous renal biopsy in adults: Experience of a single center. *Rawal Medical Journal.* 2017;42(1):34-39.
- 52. Nadium WK, Abdelwahab HH, Ibrahim MA, Shigidi MM. Histological pattern of primary glomerular diseases among adult Sudanese patients: A single center experience. *Indian Journal of Nephrology.* 2013;23(3):176-179.
- 53. Nyman RS, Cappelen-Smith J, al Suhaibani H, Alfurayh O, Shakweer W, Akhtar M. Yield and complications in percutaneous renal biopsy. A comparison between ultrasound-guided gunbiopsy and manual techniques in native and transplant kidneys. *Acta Radiologica*. 1997;38(3):431-436.
- 54. Ori Y, Neuman H, Chagnac A, et al. Using the automated biopsy gun with real-time ultrasound for native renal biopsy. *Israel Medical Association Journal: Imaj.* 2002;4(9):698-701.
- 55. Paivansalo M, Jarvi J, Suramo I. Occurrence of hematoma after renal biopsy: systematic followup study by sonography. *Clinical Nephrology.* 1984;21(5):302-303.
- 56. Pendon-Ruiz de Mier MV, Espinosa-Hernandez M, Rodelo-Haad C, et al. Prospective study of the complications associated with percutaneous renal biopsy of native kidneys: experience in a centre. *Nefrologia*. 2014;34(3):383-387.
- 57. Pincon E, Rioux-Leclercq N, Frouget T, Le Pogamp P, Vigneau C. Renal biopsies after 70 years of age: a retrospective longitudinal study from 2000 to 2007 on 150 patients in Western France. *Archives of Gerontology & Geriatrics.* 2010;51(3):e120-124.
- 58. Prasad N, Kumar S, Manjunath R, et al. Real-time ultrasound-guided percutaneous renal biopsy with needle guide by nephrologists decreases post-biopsy complications. *Clinical Kidney Journal*. 2015;8(2):151-156.
- 59. Preda A, Van Dijk LC, Van Oostaijen JA, Pattynama PM. Complication rate and diagnostic yield of 515 consecutive ultrasound-guided biopsies of renal allografts and native kidneys using a 14-gauge Biopty gun. *European Radiology*. 2003;13(3):527-530.

- 60. Rao NS, Chandra A. Needle guides enhance tissue adequacy and safety of ultrasound-guided renal biopsies. *Kidney Research and Clinical Practice*. 2018;37(1):41-48.
- 61. Richards NT, Darby S, Howie AJ, Adu D, Michael J. Knowledge of renal histology alters patient management in over 40% of cases. *Nephrology Dialysis Transplantation*. 1994;9(9):1255-1259.
- 62. Roccatello D, Sciascia S, Rossi D, et al. Safety of outpatient percutaneous native renal biopsy in patients with systemic autoimmune diseases: Results from a monocentric cohort. *Annals of the Rheumatic Diseases.* 2017;76 (Supplement 2):1410.
- 63. Rollino C, Garofalo G, Roccatello D, et al. Colour-coded Doppler sonography in monitoring native kidney biopsies. *Nephrology Dialysis Transplantation*. 1994;9(9):1260-1263.
- 64. Rollino C, Ferro M, Beltrame G, et al. Renal biopsy in patients over 75: 131 cases. *Clinical Nephrology.* 2014;82(4):225-230.
- 65. Rychlik I, Jancova E, Tesar V, et al. The Czech registry of renal biopsies. Occurrence of renal diseases in the years 1994-2000. *Nephrology Dialysis Transplantation*. 2004;19(12):3040-3049.
- 66. Sakaci T, Sahutoglu T, Ahbap E, et al. Analysis of renal biopsies in geriatric patients: Single center experience. *Nephrology Dialysis Transplantation*. 2015;3):iii415.
- 67. Sakhuja V, Singh N, Bhalla AK, Pereira BJ, Malik N, Chugh KS. Ultrasonographic localization for renal biopsy. *Journal of the Association of Physicians of India*. 1990;38(6):393-395.
- 68. Sethi I, Brier M, Dwyer A. Predicting post renal biopsy complications. *Seminars in Dialysis*. 2013;26(5):633-635.
- 69. Shah RP, Vathsala A, Chiang GS, Chin YM, Woo KT. The impact of percutaneous renal biopsies on clinical management. *Annals of the Academy of Medicine, Singapore*. 1993;22(6):908-911.
- 70. Shidham GB, Siddiqi N, Beres JA, et al. Clinical risk factors associated with bleeding after native kidney biopsy. *Nephrology*. 2005;10(3):305-310.
- 71. Soares SM, Fervenza FC, Lager DJ, Gertz MA, Cosio FG, Leung N. Bleeding complications after transcutaneous kidney biopsy in patients with systemic amyloidosis: single-center experience in 101 patients. *American Journal of Kidney Diseases*. 2008;52(6):1079-1083.
- 72. Sosa-Barrios RH, Burguera V, Rodriguez-Mendiola N, et al. Arteriovenous fistulae after renal biopsy: diagnosis and outcomes using Doppler ultrasound assessment. *BMC Nephrology*. 2017;18(1):365.
- 73. Tabatabai S, Sperati CJ, Atta MG, et al. Predictors of complication after percutaneous ultrasound-guided kidney biopsy in HIV-infected individuals: possible role of hepatitis C and HIV co-infection. *Clinical Journal of The American Society of Nephrology: CJASN.* 2009;4(11):1766-1773.
- 74. Tan X, Chen G, Liu Y, et al. Serum D-dimer is a potential predictor for thromboembolism complications in patients with renal biopsy. *Scientific Reports.* 2017;7(1):4836.
- 75. Tanaka K, Kitagawa M, Onishi A, et al. Arterial Stiffness is an Independent Risk Factor for Anemia After Percutaneous Native Kidney Biopsy. *Kidney & Blood Pressure Research.* 2017;42(2):284-293.
- 76. Tang S, Li JH, Lui SL, Chan TM, Cheng IK, Lai KN. Free-hand, ultrasound-guided percutaneous renal biopsy: experience from a single operator. *European Journal of Radiology*. 2002;41(1):65-69.
- 77. Tikkakoski T, Waahtera K, Makarainen H, et al. Diffuse renal disease. Diagnosis by ultrasoundguided cutting needle biopsy. *Acta Radiologica*. 1994;35(1):15-18.
- 78. Tondel C, Vikse BE, Bostad L, Svarstad E. Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988-2010. *Clinical Journal of The American Society of Nephrology: CJASN.* 2012;7(10):1591-1597.

- 79. Torres Munoz A, Valdez-Ortiz R, Gonzalez-Parra C, Espinoza-Davila E, Morales-Buenrostro LE, Correa-Rotter R. Percutaneous renal biopsy of native kidneys: efficiency, safety and risk factors associated with major complications. *Archives of Medical Science*. 2011;7(5):823-831.
- 80. Tung KT, Downes MO, O'Donnell PJ. Renal biopsy in diffuse renal disease--experience with a 14gauge automated biopsy gun. *Clinical Radiology*. 1992;46(2):111-113.
- 81. Wang C, Yang Y, Jin L, et al. Evaluating renal biopsy-associated hemorrhage complications by the equation and providing an early intervention: a single-center experience. *Journal of Nephrology*. 2015;28(6):691-700.
- 82. Werner M, Osadchy A, Plotkin E, Berheim J, Rathaus V. Increased detection of early vascular abnormalities after renal biopsies by color Doppler sonography. *Journal of Ultrasound in Medicine*. 2007;26(9):1221-1226.
- 83. Whittier WL, Korbet SM. Timing of complications in percutaneous renal biopsy. *Journal of the American Society of Nephrology*. 2004;15(1):142-147.
- 84. Yamamoto H, Hashimoto H, Nakamura M, Horiguchi H, Yasunaga H. Relationship between hospital volume and hemorrhagic complication after percutaneous renal biopsy: results from the Japanese diagnosis procedure combination database. *Clinical & Experimental Nephrology.* 2015;19(2):271-277.
- 85. Yang F, Li B, Cui W, et al. A clinicopathological study of renal biopsies from 288 elderly patients: analysis based on 4,185 cases. *International Urology & Nephrology*. 2015;47(2):327-333.
- Yesudas SS, Georgy NK, Manickam S, et al. Percutaneous real-time ultrasound-guided renal biopsy performed solely by nephrologists: A case series. *Indian Journal of Nephrology*. 2010;20(3):137-141.
- 87. Zhang PP, Ge YC, Li SJ, Xie HL, Li LS, Liu ZH. Renal biopsy in type 2 diabetes: timing of complications and evaluating of safety in Chinese patients. *Nephrology*. 2011;16(1):100-105.